Meat, Eggs, Fish, and Seafood

  • Chapter
  • First Online:
Emerging Food Authentication Methodologies Using GC/MS

Abstract

Food authenticity is a rapidly growing field due to increasing consumer concerns about food safety and quality. Food authenticity is a key tool for ensuring food safety, quality, and consumer protection, as well as complying with national laws, international standards, and other regulations. Meat and meat products, eggs, fish, and seafood are some of the important food groups with a high incidence of fraudulent activities. Food fraud has become more relevant with increased damaging potential in a globalized food supply chain, as evidenced by a recent string of adulteration incidents in these food products that resulted in significant economic and health costs. As a result, there is an imperative need for accurate standardized food authentication methodologies. Due to the chemical complexity of foodstuffs and the high consumer demand for food quality and authenticity, high-resolution chromatographic techniques, such as gas chromatography (GC) coupled with mass spectrometry (MS), have emerged as useful food authentication tools. This chapter reviews the emerging food authentication methodologies using GC/MS for the authentication of meat, eggs, fish, and seafood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-ACB:

2-alkylcyclobuta-nones

DCB:

2-dodecylcyclobutanone

DH:

dynamic headspace

ECD:

electron capture detection

ELISA:

enzyme-linked immunosorbent assays

GC:

gas chromatography

GC/MS-MS:

gas chromatography–tandem mass spectrometry

HS:

headspace

HPLC/MS-MS:

high-performance liquid chromatography–tandem mass spectrometry

HUFAs:

highly unsaturated fatty acids

IRE:

incubator-rejected eggs

LVHS:

large volume headspace

LCPUFAs:

long-chain polyunsaturated fatty acids

LOQ:

limit of quantitation

MS:

mass spectrometry

OPLS-DA:

orthogonal principal least squares discriminant analysis

OPLS-R:

orthogonal principal least squares regression

PAHs:

polycyclic aromatic hydrocarbons

PCI:

positive chemical ionization

PCA:

principal component analysis

SPE:

solid-phase extraction

SPME:

solid-phase microextraction

UHPLC/HRMS:

ultrahigh-performance liquid chromatography–high resolution mass spectrometry

References

  1. Aung MM, Chang YS (2014) Traceability in a food supply chain: safety and quality perspectives. Food Control 39:172–184

    Article  Google Scholar 

  2. Drivelos SA, Georgiou CA (2012) Multi-element and multi-isotope-ratio analysis to determine the geographical origin of foods in the European Union. TrAC Trends Anal Chem 40:38–51

    Article  CAS  Google Scholar 

  3. Georgiou CA, Danezis GP (2015) Elemental and isotopic mass spectrometry. In: Comprehensive analytical chemistry. Elsevier, pp 131–243

    Google Scholar 

  4. Efenberger-Szmechtyk M et al (2020) Composition and antibacterial activity of Aronia melanocarpa (Michx.) Elliot, Cornus mas L. and Chaenomeles superba Lindl. leaf extracts. Molecules 25(9):2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Spink J, Moyer DC (2011) Defining the public health threat of food fraud. J Food Sci 76(9):R157–R163

    Article  CAS  PubMed  Google Scholar 

  6. Doosti A, Ghasemi Dehkordi P, Rahimi E (2014) Molecular assay to fraud identification of meat products. J Food Sci Technol 51(1):148–152

    Article  CAS  PubMed  Google Scholar 

  7. Ballin NZ (2010) Authentication of meat and meat products. Meat Sci 86(3):577–587

    Article  CAS  PubMed  Google Scholar 

  8. Fadzlillah NA et al (2011) Halal food issues from Islamic and modern science perspectives. In 2nd international conference on humanities, historical and social sciences. IACSIT Press Singapore

    Google Scholar 

  9. Ballin NZ, Vogensen FK, Karlsson AH (2009) Species determination–Can we detect and quantify meat adulteration? Meat Sci 83(2):165–174

    Article  CAS  PubMed  Google Scholar 

  10. van Ruth S et al (2011) Authentication of organic and conventional eggs by carotenoid profiling. Food Chem 126(3):1299–1305

    Article  Google Scholar 

  11. Cherian G, Holsonbake T, Goeger M (2002) Fatty acid composition and egg components of specialty eggs. Poult Sci 81(1):30–33

    Article  CAS  PubMed  Google Scholar 

  12. Rock L (2012) The use of stable isotope techniques in egg authentication schemes: a review. Trends Food Sci Technol 28(2):62–68

    Article  CAS  Google Scholar 

  13. McManus A, Newton W (2011) Seafood, nutrition and human health: a synopsis of the nutritional benefits of consuming seafood

    Google Scholar 

  14. Mazzeo MF, Siciliano RA (2016) Proteomics for the authentication of fish species. J Proteome 147:119–124

    Article  CAS  Google Scholar 

  15. Danezis GP et al (2016) Food authentication: techniques, trends and emerging approaches. TrAC Trends Anal Chem 85:123–132

    Article  CAS  Google Scholar 

  16. Pastor K, Ačanski M, Vujić D (2019) Gas chromatography in food authentication, in Gas Chromatography-Derivatization, Sample Preparation, Application. IntechOpen

    Google Scholar 

  17. Cuadros-Rodríguez L et al (2016) Chromatographic fingerprinting: an innovative approach for food ‘identitation’ and food authentication – a tutorial. Anal Chim Acta 909:9–23

    Article  PubMed  Google Scholar 

  18. Gallo M, Ferranti P (2016) The evolution of analytical chemistry methods in foodomics. J Chromatogr A 1428:3–15

    Article  CAS  PubMed  Google Scholar 

  19. Devine C, Dikeman M (2014) Encyclopedia of meat sciences. Elsevier

    Google Scholar 

  20. Walker MJ, Burns M, Burns DT (2013) Horse meat in beef products—species substitution 2013. J Assoc Publ Analysts 41:67–106

    Google Scholar 

  21. La Neve F et al (2008) Authentication of meat from game and domestic species by SNaPshot minisequencing analysis. Meat Sci 80(2):216–224

    Article  PubMed  Google Scholar 

  22. Rodriguez MA et al (2003) Identification of goose, mule duck, chicken, turkey, and swine in foie gras by species-specific polymerase chain reaction. J Agric Food Chem 51(6):1524–1529

    Article  CAS  PubMed  Google Scholar 

  23. Schmidt O et al (2005) Inferring the origin and dietary history of beef from C, N and S stable isotope ratio analysis. Food Chem 91(3):545–549

    Article  CAS  Google Scholar 

  24. Franke BM et al (2008) Element signature analysis: its validation as a tool for geographic authentication of the origin of dried beef and poultry meat. Eur Food Res Technol 227(3):701–708

    Article  CAS  Google Scholar 

  25. Mortensen M et al (2006) Effect of freezing temperature, thawing and cooking rate on water distribution in two pork qualities. Meat Sci 72(1):34–42

    Article  PubMed  Google Scholar 

  26. Szűcs S et al (2006) Method validation for the simultaneous determination of fecal sterols in surface waters by gas chromatography-mass spectrometry. J Chromatogr Sci 44(2):70–76

    Article  PubMed  Google Scholar 

  27. Frick G et al (2009) Identification by microscopy and MS-based electronic nose of a fraudulent addition to maize gluten. BASE

    Google Scholar 

  28. Zeleny R et al (2002) Evaluation of PCR-based beef sexing methods. J Agric Food Chem 50(15):4169–4175

    Article  CAS  PubMed  Google Scholar 

  29. Hartwig M, Hartmann S, Steinhart H (1997) Physiological quantities of naturally occurring steroid hormones (androgens and progestogens), precursors and metabolites in beef of differing sexual origin. Zeitschrift für Lebensmitteluntersuchung und-Forschung A 205(1):5–10

    Article  CAS  Google Scholar 

  30. Draisci R et al (2000) Quantitation of anabolic hormones and their metabolites in bovine serum and urine by liquid chromatography–tandem mass spectrometry. J Chromatogr A 870(1–2):511–522

    Article  CAS  PubMed  Google Scholar 

  31. Simontacchi C et al (1999) Accuracy in naturally occurring anabolic steroid assays in cattle and first approach to quality control in Italy. Analyst 124(3):307–312

    Article  CAS  PubMed  Google Scholar 

  32. Franke BM et al (2005) Geographic origin of meat—elements of an analytical approach to its authentication. Eur Food Res Technol 221(3):493–503

    Article  CAS  Google Scholar 

  33. Negrini R et al (2008) Traceability of four European protected geographic indication (PGI) beef products using single nucleotide polymorphisms (SNP) and Bayesian statistics. Meat Sci 80(4):1212–1217

    Article  CAS  PubMed  Google Scholar 

  34. Cevallos-Cevallos JM et al (2009) Metabolomic analysis in food science: a review. Trends Food Sci Technol 20(11-12):557–566

    Article  CAS  Google Scholar 

  35. Zhao Y et al (2015) A metabolomics study delineating geographical location-associated primary metabolic changes in the leaves of growing tobacco plants by GC-MS and CE-MS. Sci Rep 5(1):1–11

    Article  Google Scholar 

  36. Castro-Puyana M et al (2017) Reprint of: Application of mass spectrometry-based metabolomics approaches for food safety, quality and traceability. TrAC Trends Anal Chem 96:62–78

    Article  CAS  Google Scholar 

  37. Man K-Y et al (2021) Mass spectrometry-based untargeted metabolomics approach for differentiation of beef of different geographic origins. Food Chem 338:127847

    Article  CAS  PubMed  Google Scholar 

  38. Prache S, Priolo A, Grolier P (2003) Persistence of carotenoid pigments in the blood of concentrate-finished grazing sheep: its significance for the traceability of grass-feeding. J Anim Sci 81(2):360–367

    Article  CAS  PubMed  Google Scholar 

  39. Dunne P et al (2006) Changes in colour characteristics and pigmentation of subcutaneous adipose tissue and M. longissimus dorsi of heifers fed grass, grass silage or concentrate-based diets. Meat Sci 74(2):231–241

    Article  CAS  PubMed  Google Scholar 

  40. Duckett S et al (1993) Effects of time on feed on beef nutrient composition. J Anim Sci 71(8):2079–2088

    Article  CAS  PubMed  Google Scholar 

  41. French P et al (2000) Fatty acid composition, including conjugated linoleic acid, of intramuscular fat from steers offered grazed grass, grass silage, or concentrate-based diets. J Anim Sci 78(11):2849–2855

    Article  CAS  PubMed  Google Scholar 

  42. Vasta V, Ratel J, Engel E (2007) Mass spectrometry analysis of volatile compounds in raw meat for the authentication of the feeding background of farm animals. J Agric Food Chem 55(12):4630–4639

    Article  CAS  PubMed  Google Scholar 

  43. Bruckner S et al (2012) Characterization and comparison of spoilage processes in fresh pork and poultry. J Food Qual 35(5):372–382

    Article  CAS  Google Scholar 

  44. Rossaint S, Kreyenschmidt J (2015) Intelligent label–a new way to support food waste reduction. In Proceedings of the Institution of Civil Engineers-Waste and Resource Management. Thomas Telford Ltd

    Google Scholar 

  45. Raab V et al (2008) Generic model for the prediction of remaining shelf life in support of cold chain management in pork and poultry supply chains. J Chain Netw Sci 8(1):59–73

    Article  Google Scholar 

  46. Angood K et al (2008) A comparison of organic and conventionally-produced lamb purchased from three major UK supermarkets: price, eating quality and fatty acid composition. Meat Sci 78(3):176–184

    Article  CAS  PubMed  Google Scholar 

  47. Kim D et al (2009) Fatty acid composition and meat quality traits of organically reared Korean native black pigs. Livest Sci 120(1–2):96–102

    Article  Google Scholar 

  48. Husak R, Sebranek J, Bregendahl K (2008) A survey of commercially available broilers marketed as organic, free-range, and conventional broilers for cooked meat yields, meat composition, and relative value. Poult Sci 87(11):2367–2376

    Article  CAS  PubMed  Google Scholar 

  49. Trivedi DK et al (2016) Meat, the metabolites: an integrated metabolite profiling and lipidomics approach for the detection of the adulteration of beef with pork. Analyst 141(7):2155–2164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Campmajó G et al (2020) High-performance liquid chromatography with fluorescence detection fingerprinting combined with chemometrics for nut classification and the detection and quantitation of almond-based product adulterations. Food Control 114:107265

    Article  Google Scholar 

  51. Ellis DI et al (2005) Rapid identification of closely related muscle foods by vibrational spectroscopy and macchine learning. Analyst 130(12):1648–1654

    Article  CAS  PubMed  Google Scholar 

  52. Wagner L et al (2020) Comparison of targeted (HPLC) and nontargeted (GC-MS and NMR) approaches for the detection of undeclared addition of protein hydrolysates in Turkey breast muscle. Foods 9(8):1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rodionova OY, Pomerantsev A (2020) Chemometric tools for food fraud detection: the role of target class in non-targeted analysis. Food Chem 317:126448

    Article  CAS  PubMed  Google Scholar 

  54. Busch U et al (2017) Food Fraud-Analytische Herausforderungen von Lebensmittelverfälschungen. Z Das Gesamte Lebensm 424:424–438

    Google Scholar 

  55. Kume T et al (2009) Status of food irradiation in the world. Radiat Phys Chem 78(3):222–226

    Article  CAS  Google Scholar 

  56. Chauhan SK et al (2009) Detection methods for irradiated foods. Compr Rev Food Sci Food Saf 8(1):4–16

    Article  CAS  Google Scholar 

  57. Chen S et al (2011) Identification of irradiated prawn (Penaeus monodon) using thermoluminescence and 2-alkylcyclobutanone analyses. J Agric Food Chem 59(1):78–84

    Article  CAS  PubMed  Google Scholar 

  58. Zanardi E et al (2007) Evaluation of 2-alkylcyclobutanones in irradiated cured pork products during vacuum-packed storage. J Agric Food Chem 55(10):4264–4270

    Article  CAS  PubMed  Google Scholar 

  59. Soncin S et al (2012) Improved determination of 2-dodecylcyclobutanone in irradiated ground beef patties by gas-chromatography–mass-spectrometry (GC/MS) coupled with solid-phase microextraction (SPME) technique. Food Chem 134(1):440–444

    Article  CAS  Google Scholar 

  60. Ballin N, Lametsch R (2008) Analytical methods for authentication of fresh vs. thawed meat – a review. Meat Sci 80(2):151–158

    Article  CAS  PubMed  Google Scholar 

  61. Zhang L, Zhang M, Mujumdar AS (2021) Technological innovations or advancement in detecting frozen and thawed meat quality: a review. Crit Rev Food Sci Nutr:1–17

    Google Scholar 

  62. Gremaud G, Karlen S, Hulliger K (2002) Analytical methods for the authentication of meat and meat products: recent developments. Mitt Lebensmittelunters Hyg 93(5):481–501

    CAS  Google Scholar 

  63. Górska-Horczyczak E et al (2017) Chromatographic fingerprints supported by artificial neural network for differentiation of fresh and frozen pork. Food Control 73:237–244

    Article  Google Scholar 

  64. Chen T-H et al (2016) The use of the impedance measurements to distinguish between fresh and frozen–thawed chicken breast muscle. Meat Sci 116:151–157

    Article  PubMed  Google Scholar 

  65. Rose M et al (2015) Investigation into the formation of PAHs in foods prepared in the home to determine the effects of frying, grilling, barbecuing, toasting and roasting. Food Chem Toxicol 78:1–9

    Article  CAS  PubMed  Google Scholar 

  66. Demirok E, Kolsarıcı N (2014) Effect of green tea extract and microwave pre-cooking on the formation of acrylamide in fried chicken drumsticks and chicken wings. Food Res Int 63:290–298

    Article  CAS  Google Scholar 

  67. Lee J-S et al (2020) Effects of thawing and frying methods on the formation of acrylamide and polycyclic aromatic hydrocarbons in chicken meat. Foods 9(5):573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pressman P et al (2017) Food additive safety: a review of toxicologic and regulatory issues. Toxicol Res Appl 1:2397847317723572

    Google Scholar 

  69. Bahadoran Z et al (2016) Nitrate and nitrite content of vegetables, fruits, grains, legumes, dairy products, meats and processed meats. J Food Compos Anal 51:93–105

    Article  CAS  Google Scholar 

  70. Martins FC, Sentanin MA, De Souza D (2019) Analytical methods in food additives determination: compounds with functional applications. Food Chem 272:732–750

    Article  CAS  PubMed  Google Scholar 

  71. Honikel K-O (2008) The use and control of nitrate and nitrite for the processing of meat products. Meat Sci 78(1-2):68–76

    Article  CAS  PubMed  Google Scholar 

  72. Bedale W, Sindelar JJ, Milkowski AL (2016) Dietary nitrate and nitrite: benefits, risks, and evolving perceptions. Meat Sci 120:85–92

    Article  CAS  PubMed  Google Scholar 

  73. Iammarino M et al (2019) Simultaneous determination of twelve dyes in meat products: development and validation of an analytical method based on HPLC-UV-diode array detection. Food Chem 285:1–9

    Article  CAS  PubMed  Google Scholar 

  74. Ferrucci L et al (2012) Meat consumption and the risk of incident distal colon and rectal adenoma. Br J Cancer 106(3):608–616

    Article  CAS  PubMed  Google Scholar 

  75. Catsburg CE et al (2014) Dietary sources of N-nitroso compounds and bladder cancer risk: findings from the Los Angeles bladder cancer study. Int J Cancer 134(1):125–135

    Article  PubMed  Google Scholar 

  76. Luckovitch N, Pagliano E (2020) A reference isotope dilution headspace GC/MS method for the determination of nitrite and nitrate in meat samples. Int J Food Sci Technol 55(3):1110–1118

    Article  CAS  Google Scholar 

  77. Yang EJ, Lee YE, Moon H-K (2014) Nutritional roles and health effects of eggs. J Nutr Health 47(6):385–393

    Article  Google Scholar 

  78. Van Ruth S et al (2013) Eggspectation: organic egg authentication method challenged with produce from ten different countries. Qual Assur Saf Crops Foods 5(1):7–14

    Article  Google Scholar 

  79. Gregory NG, Gepp MJ, Babidge PJ (2005) Method for checking label accuracy in barn and free range eggs. J Sci Food Agric 85(9):1421–1426

    Article  CAS  Google Scholar 

  80. Giannenas I et al (2009) Trace mineral content of conventional, organic and courtyard eggs analysed by inductively coupled plasma mass spectrometry (ICP-MS). Food Chem 114(2):706–711

    Article  CAS  Google Scholar 

  81. dell’Oro D et al (2014) Determination of pyrethroids in chicken egg samples: development and validation of a confirmatory analytical method by gas chromatography/mass spectrometry. Int J Food Sci Technol 49(5):1391–1400

    Article  Google Scholar 

  82. Vanitha P et al (2014) Estimation of organochlorine pesticide residues in poultry meat and egg. Ind J Vet Anim Sci Res 43(2):121–130

    Google Scholar 

  83. Darko G, Acquaah SO (2007) Levels of organochlorine pesticides residues in meat. Int J Environ Sci Technol 4(4):521–524

    Article  CAS  Google Scholar 

  84. Thurman EM, Ferrer I, Zweigenbaum JA (2008) Multiresidue analysis of 301 pesticides in food samples by LC/triple quadrupole mass spectrometry. Agilent Technologies Inc

    Google Scholar 

  85. Jadhav VJ, Waskar VS (2011) Public health implications of pesticide residues in meat. Veterinary World 4(4)

    Google Scholar 

  86. Santos MA et al (2011) Deltamethrin and Permethrin in the liver and heart of Wistar rats submitted to oral subchronic exposure. J Braz Chem Soc 22:891–896

    Article  CAS  Google Scholar 

  87. Kinsella B et al (2009) Current trends in sample preparation for growth promoter and veterinary drug residue analysis. J Chromatogr A 1216(46):7977–8015

    Article  CAS  PubMed  Google Scholar 

  88. Zawiyah S et al (2007) Determination of organochlorine and pyrethroid pesticides in fruit and vegetables using SAX/PSA clean-up column. Food Chem 102(1):98–103

    Article  CAS  Google Scholar 

  89. Sun F et al (2005) Multiresidue determination of pesticide in fishery products by a tandem solid-phase extraction technique. J Food Drug Anal 13(2)

    Google Scholar 

  90. Grünfeld H, Bonefeld-Jorgensen E (2004) Effect of in vitro estrogenic pesticides on human oestrogen receptor α and β mRNA levels. Toxicol Lett 151(3):467–480

    Article  PubMed  Google Scholar 

  91. Barbini DA et al (2007) Development of an analytical method for the determination of the residues of four pyrethroids in meat by GC–ECD and confirmation by GC–MS. Anal Bioanal Chem 389(6):1791–1798

    Article  CAS  PubMed  Google Scholar 

  92. Khay S et al (2009) Simultaneous determination of pyrethroids from pesticide residues in porcine muscle and pasteurized milk using GC. J Sep Sci 32(2):244–251

    Article  CAS  PubMed  Google Scholar 

  93. Sassine A et al (2004) Cypermethrin residues determination in the milk of a lactating dairy cow by gas chromatography-ion trap mass spectrometry. J Anal Toxicol 28(4):238–241

    Article  CAS  PubMed  Google Scholar 

  94. Esteve-Turrillas FA, Pastor A, de la Guardia M (2005) Determination of pyrethroid insecticide residues in vegetable oils by using combined solid-phases extraction and tandem mass spectrometry detection. Anal Chim Acta 553(1-2):50–57

    Article  CAS  Google Scholar 

  95. Hidalgo A et al (2020) Evaluation of chemical indices for the identification of incubator-reject eggs in egg products. Food Control 107:106767

    Article  CAS  Google Scholar 

  96. Johnson AE et al (2020) The effect of storage temperature on the metabolic profiles derived from chicken eggs. Food Control 109:106930

    Article  CAS  Google Scholar 

  97. Cavanna D et al (2018) Egg product freshness evaluation: a metabolomic approach. J Mass Spectrom 53(9):849–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Baumann S (2008) Rapid screening and confirmation of melamine and its analogs in baby formula and soy products using triple quadrupole GC/MS and backflushing. Agilent Technologies, Santa Clara, CA

    Google Scholar 

  99. Litzau JJ, Mercer GE, Mulligan KJ (2008) GC-MS screen for the presence of melamine, ammeline, ammelide, and cyanuric acid. US FDA Laboratory Information Bulletin 4423

    Google Scholar 

  100. Veyrand B et al (2009) Analysis of melamine and its degrdation Products in milk based products using GC-MS/MS. Waters Corporation, Manchester

    Google Scholar 

  101. Wang H (2008) Determination of melamine, ammeline, ammelide and cyanuric acid in infant milk-based formula and other food and feed products using the Varian 220-MS ion trap GC/MS/MS. Varian, Inc, Palo Alto, CA [cited 2009 Nov 15]. Available from: http://www …

    Google Scholar 

  102. Silva AJ, Hellberg RS, Hanner RH (2021) Seafood fraud. In: Food fraud. Elsevier, pp 109–137

    Chapter  Google Scholar 

  103. Fox M et al (2018) The seafood supply chain from a fraudulent perspective. Food Security 10(4):939–963

    Article  Google Scholar 

  104. Wang C, Bi H (2021) Super-fast seafood authenticity analysis by one-step pretreatment and comparison of mass spectral patterns. Food Control 123:107751

    Article  CAS  Google Scholar 

  105. Dooley JJ et al (2005) Fish species identification using PCR− RFLP analysis and lab-on-a-chip capillary electrophoresis: application to detect white fish species in food products and an interlaboratory study. J Agric Food Chem 53(9):3348–3357

    Article  CAS  PubMed  Google Scholar 

  106. Matthiesen R, Bunkenborg J (2020) Introduction to mass spectrometry-based proteomics. In: Mass spectrometry data analysis in proteomics. Springer, pp 1–58

    Chapter  Google Scholar 

  107. Wang S et al (2017) Identification and quantification of potential anti-inflammatory hydroxycinnamic acid amides from wolfberry. J Agric Food Chem 65(2):364–372

    Article  CAS  PubMed  Google Scholar 

  108. Piovesana S et al (2016) Labeling and label free shotgun proteomics approaches to characterize muscle tissue from farmed and wild gilthead sea bream (Sparus aurata). J Chromatogr A 1428:193–201

    Article  CAS  PubMed  Google Scholar 

  109. Paracchini V et al (2017) Novel nuclear barcode regions for the identification of flatfish species. Food Control 79:297–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Abbadi M et al (2017) Species identification of bivalve molluscs by pyrosequencing. J Sci Food Agric 97(2):512–519

    Article  CAS  PubMed  Google Scholar 

  111. Bai J et al (2019) Aroma profile characterization of mahi-mahi and tuna for determining spoilage using purge and trap gas chromatography-mass spectrometry. J Food Sci 84(3):481–489

    Article  CAS  PubMed  Google Scholar 

  112. Wang H et al (2020) Characteristic volatile compounds in different parts of grass carp by comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. Int J Food Prop 23(1):777–796

    Article  CAS  Google Scholar 

  113. Wang Z et al (2022) Large volume headspace GC/MS analysis for the identification of volatile compounds relating to seafood decomposition. Food Sci Nutr

    Google Scholar 

  114. Corcellas C, Eljarrat E, Barceló D (2015) First report of pyrethroid bioaccumulation in wild river fish: a case study in Iberian river basins (Spain). Environ Int 75:110–116

    Article  CAS  PubMed  Google Scholar 

  115. Feo ML et al (2010) Presence of pyrethroid pesticides in water and sediments of Ebro River Delta. J Hydrol 393(3-4):156–162

    Article  CAS  Google Scholar 

  116. García-Rodríguez D et al (2012) Analysis of pesticide residues in seaweeds using matrix solid-phase dispersion and gas chromatography–mass spectrometry detection. Food Chem 135(1):259–267

    Article  Google Scholar 

  117. Hou X et al (2014) Ultrasound-assisted dispersive liquid–liquid microextraction based on the solidification of a floating organic droplet followed by gas chromatography for the determination of eight pyrethroid pesticides in tea samples. J Chromatogr B 969:123–127

    Article  CAS  Google Scholar 

  118. Alonso MB et al (2012) Pyrethroids: a new threat to marine mammals? Environ Int 47:99–106

    Article  CAS  PubMed  Google Scholar 

  119. Dallegrave A et al (2016) Methodology for trace analysis of 17 pyrethroids and chlorpyrifos in foodstuff by gas chromatography–tandem mass spectrometry. Anal Bioanal Chem 408(27):7689–7697

    Article  CAS  PubMed  Google Scholar 

  120. Langford KH et al (2014) Do antiparasitic medicines used in aquaculture pose a risk to the Norwegian aquatic environment? Environ Sci Technol 48(14):7774–7780

    Article  CAS  PubMed  Google Scholar 

  121. Tang W et al (2018) Pyrethroid pesticide residues in the global environment: an overview. Chemosphere 191:990–1007

    Article  CAS  PubMed  Google Scholar 

  122. Chung SW, Lam C (2012) Development and validation of a method for determination of residues of 15 pyrethroids and two metabolites of dithiocarbamates in foods by ultra-performance liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem 403(3):885–896

    Article  CAS  PubMed  Google Scholar 

  123. Jia F et al (2012) New strategy to enhance the extraction efficiency of pyrethroid pesticides in fish samples using a modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method. Anal Methods 4(2):449–453

    Article  CAS  Google Scholar 

  124. Sapozhnikova Y, Lehotay SJ (2013) Multi-class, multi-residue analysis of pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, polybrominated diphenyl ethers and novel flame retardants in fish using fast, low-pressure gas chromatography–tandem mass spectrometry. Anal Chim Acta 758:80–92

    Article  CAS  PubMed  Google Scholar 

  125. Chatterjee NS et al (2016) Multiresidue analysis of multiclass pesticides and polyaromatic hydrocarbons in fatty fish by gas chromatography tandem mass spectrometry and evaluation of matrix effect. Food Chem 196:1–8

    Article  CAS  PubMed  Google Scholar 

  126. de Oliveira LG et al (2019) Development and validation of a method for the analysis of pyrethroid residues in fish using GC–MS. Food Chem 297:124944

    Article  CAS  PubMed  Google Scholar 

  127. Tuck S et al (2018) A review of methodology for the analysis of pyrethrin and pyrethroid residues in food of animal origin. Food Addit Contam Part A 35(5):911–940

    Article  CAS  Google Scholar 

  128. Cheung PCK, Mehta BM (2015) Handbook of food chemistry. Springer

    Book  Google Scholar 

  129. Craig, S.R., et al., Understanding fish nutrition, feeds, and feeding. 2017

    Google Scholar 

  130. Harlioglu AG, Güvenç M (2013) Impact of fish meal replacement with full-fat soya on the muscle and liver fatty acid composition in rainbow trout. Journal of FisheriesSciences. com 7(2):99

    CAS  Google Scholar 

  131. Idris MHH et al (2021) A conjunction of sn-2 fatty acids and overall fatty acid composition combined with chemometric techniques increase the effectiveness of lard detection in fish feed. Chemom Intell Lab Syst 213:104308

    Article  Google Scholar 

  132. Bayraktar K, Bayir A (2012) The effect of the replacement of fish oil with animal fats on the growth performance, survival and fatty acid profile of rainbow trout juveniles, Oncorhynchus mykiss. Turk J Fish Aquat Sci 12(3)

    Google Scholar 

  133. Zhou L et al (2016) Effects of total replacement of fish oil by pork lard or rapeseed oil and recovery by a fish oil finishing diet on growth, health and fish quality of gibel carp (C arassius auratus gibelio). Aquac Res 47(9):2961–2975

    Article  CAS  Google Scholar 

  134. Caballero M et al (2002) Impact of different dietary lipid sources on growth, lipid digestibility, tissue fatty acid composition and histology of rainbow trout, Oncorhynchus mykiss. Aquaculture 214(1-4):253–271

    Article  CAS  Google Scholar 

  135. Nizar NNA, Marikkar JMN, Hashim DM (2013) Differentiation of lard, chicken fat, beef fat and mutton fat by GCMS and EA-IRMS techniques. J Oleo Sci 62(7):459–464

    Article  CAS  Google Scholar 

  136. Al-Kahtani H, Abou Arab A, Asif M (2014) Detection of lard in binary animal fats and vegetable oils mixtures and in some commercial processed foods. Int J Nutr Food Eng 8(11):1244–1252

    Google Scholar 

  137. Lavine BK, Moores A, Helfend LK (1999) A genetic algorithm for pattern recognition analysis of pyrolysis gas chromatographic data. J Anal Appl Pyrolysis 50(1):47–62

    Article  CAS  Google Scholar 

  138. Haswell S (1992) Practical guide to chemometrics. CRC Press

    Google Scholar 

  139. Authority, E.F.S. (2004) Opinion of the Scientific Panel on contaminants in the food chain [CONTAM] related to the toxicity of fishery products belonging to the family of Gempylidae. EFSA J 2(9):92

    Article  Google Scholar 

  140. Chong W (2007) Sale of oilfish to be curbed. The Standard:26

    Google Scholar 

  141. Chung C (2007) Legislation to regulate fish products on the table. The Standard 3

    Google Scholar 

  142. Mok D (2007) Welcome sold sushi and sashimi made from oilfish. The South China Morning Post (February 2)

    Google Scholar 

  143. Goh L (2007) Importers can use fast test for oilfish, say researchers. The South China Morning Post 7

    Google Scholar 

  144. Civera T (2003) Species identification and safety of fish products. Vet Res Commun 27:481

    Article  PubMed  Google Scholar 

  145. Quinteiro J et al (1998) Use of mtDNA direct polymerase chain reaction (PCR) sequencing and PCR− restriction fragment length polymorphism methodologies in species identification of canned tuna. J Agric Food Chem 46(4):1662–1669

    Article  CAS  Google Scholar 

  146. Bartlett S, Davidson W (1992) FINS (forensically informative nucleotide sequencing): a procedure for identifying the animal origin of biological specimens. BioTechniques 12(3):408–411

    CAS  PubMed  Google Scholar 

  147. Ling KH et al (2008) Rapid detection of oilfish and escolar in fish steaks: a tool to prevent keriorrhea episodes. Food Chem 110(2):538–546

    Article  CAS  PubMed  Google Scholar 

  148. Yakes BJ et al (2021) Evaluation of portable sensor and spectroscopic devices for seafood decomposition determination. Food Anal Methods 14(11):2346–2356

    Article  Google Scholar 

  149. McGann JP (2017) Poor human olfaction is a 19th-century myth. Science 356(6338):eaam7263

    Article  PubMed  PubMed Central  Google Scholar 

  150. Department, A.O.o.t.U.N.F. (1999) The state of world fisheries and aquaculture, 1998. Food & Agriculture Org

    Google Scholar 

  151. Zhang Z, Li G (2010) A review of advances and new developments in the analysis of biological volatile organic compounds. Microchem J 95(2):127–139

    Article  CAS  Google Scholar 

  152. Boziaris IS, Parlapani FF (2017) Specific spoilage organisms (SSOs) in fish. In: The microbiological quality of food. Elsevier, pp 61–98

    Chapter  Google Scholar 

  153. Joffraud J-J et al (2001) Characterisation of volatile compounds produced by bacteria isolated from the spoilage flora of cold-smoked salmon. Int J Food Microbiol 66(3):175–184

    Article  CAS  PubMed  Google Scholar 

  154. Self RL, McLendon MG, Lock CM (2019) Determination of decomposition in Salmon products by mass spectrometry with sensory-driven multivariate analysis. J Food Saf 39(5):e12676

    Article  CAS  Google Scholar 

  155. Schröder U (2008) Challenges in the traceability of seafood. J Verbr Lebensm 3(1):45–48

    Article  Google Scholar 

  156. Karnjanapratum S et al (2013) Chemical compositions and nutritional value of Asian hard clam (Meretrix lusoria) from the coast of Andaman Sea. Food Chem 141(4):4138–4145

    Article  CAS  PubMed  Google Scholar 

  157. Rittenschober D, Nowak V, Charrondiere UR (2013) Review of availability of food composition data for fish and shellfish. Food Chem 141(4):4303–4310

    Article  CAS  PubMed  Google Scholar 

  158. Sousa B et al (2016) Alteration in phospholipidome profile of myoblast H9c2 cell line in a model of myocardium starvation and ischemia. J Cell Physiol 231(10):2266–2274

    Article  CAS  PubMed  Google Scholar 

  159. Adebayo-Tayo B et al (2012) Microbial quality of frozen fish sold in Uyo Metropolis. Nat Sci 10(3):71–77

    Google Scholar 

  160. Ricardo F et al (2017) Fatty acid dynamics of the adductor muscle of live cockles (Cerastoderma edule) during their shelf-life and its relevance for traceability of geographic origin. Food Control 77:192–198

    Article  CAS  Google Scholar 

  161. Oliveira J et al (2011) Microbial contamination and purification of bivalve shellfish: crucial aspects in monitoring and future perspectives – a mini-review. Food Control 22(6):805–816

    Article  Google Scholar 

  162. Ricardo F et al (2015) Potential use of fatty acid profiles of the adductor muscle of cockles (Cerastoderma edule) for traceability of collection site. Sci Rep 5(1):1–8

    Article  Google Scholar 

  163. Leal MC et al (2015) Seafood traceability: current needs, available tools, and biotechnological challenges for origin certification. Trends Biotechnol 33(6):331–336

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shah, Y.A., Lachenmeier, D.W. (2023). Meat, Eggs, Fish, and Seafood. In: Pastor, K. (eds) Emerging Food Authentication Methodologies Using GC/MS. Springer, Cham. https://doi.org/10.1007/978-3-031-30288-6_6

Download citation

Publish with us

Policies and ethics

Navigation