Cereals, Pseudocereals, Flour, and Bakery Products

  • Chapter
  • First Online:
Emerging Food Authentication Methodologies Using GC/MS
  • 190 Accesses

Abstract

Guaranteeing the authenticity and origin of both cereals and cereal products is a priority for consumers, the food industry, and authorities. Cereals, cereal ingredients, and by-products might be either deliberately or unintentionally adulterated as a consequence of mislabeling or by the substitution of a high-value ingredient (e.g., premium quality) with a similar but of lower-quality or cheap value, ultimately leading to intentional or unintentional fraud. This chapter presents and reviews current applications employing gas chromatography-mass spectrometry (GC/MS) that have been utilized by different researchers in the field to determine the authenticity of cereal grains such as wheat, rye, triticale, barley, oats, corn, and rice, as well as pseudocereal grains (e.g., buckwheat, quinoa, and amaranth). Applications related to the authenticity of cereal and pseudocereal flours and pasta and bread made from these flours that are available in the food market (e.g., bread, pastas, cookies, etc.) will also be reported. Sample preparation, pre-processing methods, and data processing techniques (e.g., chemometrics) will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barrett B (2010) Measuring food insecurity. Christopher Sci 327:825

    Article  CAS  Google Scholar 

  2. Bernard HM, Rosegrant M, van Boekel AJS, Ortiz R (2010) The future of food: scenarios for 2050. Crop Sci 50:33–50

    Article  Google Scholar 

  3. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:810–818

    Article  Google Scholar 

  4. Poore J, Nemecek T (2018) Reducing food’s environmental impacts through producers and consumers. Science 360(6392):987–992

    Article  CAS  PubMed  Google Scholar 

  5. Whitfield S, Challinor AJ, Rees R (2018) Frontiers in climate smart food systems: outlining the research space. Front Sustain Food Syst 2:Art 2

    Google Scholar 

  6. Ellis DI, Brewster VL, Dunn WB, Allwood JW, Golovanov AP, Goodacre R (2012) Fingerprinting food: Current technologies for the detection of food adulteration and contamination. Chem Soc Rev 41(17):5706–5727

    Article  CAS  PubMed  Google Scholar 

  7. Ellis DI, Muhamadali H, Haughey SA, Elliott CT, Goodacre R (2015) Point and shoot: rapid quantitative detection methods for on-site food frau analysis—moving out the laboratory and into the food supply chain. Anal Methods 7:9401–9414

    Article  Google Scholar 

  8. Elliott C (2014) Review into the integrity and assurance of food supply networks final report: a national food crime prevention framework. Her Majesty’s (HM) Government, London, UK. https://www.gov.uk/government/publications/elliott-review-into-the-integrity-and-assurance-of-food-supply-networks-final-report. Accessed 5 Jan 2018

  9. Gangjee DS (2017) Proving provenance? Geographical indications certification and its ambiguities. World Dev 98:12–24

    Article  Google Scholar 

  10. Garcia-Oliveira P, Fraga-Corral M, Pereira AG, Prieto MA, Simal-Gandara J (2020) Solutions for the sustainability of the food production and consumption systems. Crit Rev Food Sci Nutr 62(7):1765–1781

    Article  PubMed  Google Scholar 

  11. Power A, Cozzolino D (2020) How fishy is your fish? Authentication, provenance and traceability in fish and seafood by means of vibrational spectroscopy. Appl Sci 10:4150

    Article  CAS  Google Scholar 

  12. Sanzin E, Badea M, Dos Santos A, Restani P, Sievers H (2011) Quality control of plant food supplements. Food Funct 2:740–746

    Article  Google Scholar 

  13. Serazetdinova L, Garratt J, Baylis A, Stergiadis S, Collison M, Davis S (2019) How should we turn data into decisions in AgriFood? J Sci Food Agric 99:3213–3219

    Article  CAS  PubMed  Google Scholar 

  14. Gallo M, Ferranti P (2016) The evolution of analytical chemistry methods in foodomics. J Chrom A 1428:3–15

    Article  CAS  Google Scholar 

  15. Carcea M, Brereton P, Hsu R, Kelly S, Marmiroli N, Melini F, Soukoulis C, Wen** D (2009) Food authenticity assessment: ensuring compliance with food legislation and traceability requirements. Qual Assur Saf Crops Foods 1(2):93–100

    Article  Google Scholar 

  16. Medina S, Pereira JA, Silva P, Perestrelo R, Câmara JS (2019) Food fingerprints—a valuable tool to monitor food authenticity and safety. Food Chem 278:144–162

    Article  CAS  PubMed  Google Scholar 

  17. Robson K, Dean M, Haughey S, Elliott C (2021) A comprehensive review of food fraud terminologies and food fraud mitigation guides. Food Control 120:107516

    Article  Google Scholar 

  18. Callao MP, Ruisánchez I (2018) An overview of multivariate qualitative methods for food fraud detection. Food Control 86:283–293

    Article  CAS  Google Scholar 

  19. Cozzolino D (2015) Foodomics and infrared spectroscopy: from compounds to functionality. Curr Opin Food Sci 4:39–43

    Article  Google Scholar 

  20. Fritsche J (2018) Recent developments and digital perspectives in food safety and authenticity. J Agric Food Chem 66:7562–7567

    Article  CAS  PubMed  Google Scholar 

  21. Spink J, Moyer DC, Speier-Pero C (2016) Introducing the food fraud initial screening model (FFIS). Food Control 69:306–314

    Article  Google Scholar 

  22. Spink J (2019) The current state of food fraud prevention: overview and requirements to address how to start? and how much is enough? Curr Opin Food Sci 27:130–138

    Article  Google Scholar 

  23. Aung MM, Chang YS (2014) Traceability in a food supply chain: Safety and quality perspectives. Food Control 39:172–184

    Article  Google Scholar 

  24. Fan S, Teng P, Chew P, Smith G, Copeland L (2021) Food systems resilience and COVI-19—lessons from the Asian experience. Glob Food Sec 28:100501

    Article  PubMed  PubMed Central  Google Scholar 

  25. Montgomery H, Haughey SA, Elliot CT (2020) Recent food safety and fraud issues within the dairy supply chain (2015-2019). Glob Food Sec 26:100447

    Article  PubMed  PubMed Central  Google Scholar 

  26. Udmale P, Pal I, Szabo S, Pramanika M, Large A (2020) Global food security in the context of COVID-19: A scenario-based exploratory analysis. Prog Disaster Sci 7:100120

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dabbene F, Gay P, Tortia C (2014) Traceability issues in food supply chain management: A review. Biosyst Eng 120:65–80

    Article  Google Scholar 

  28. van Ruth SM, Lunning PA, Silvis LCJ, Yang Y, Huisman W (2018) Differences in fraud vulnerability in a various food supply chains and their tiers. Food Control 84:375–381

    Article  Google Scholar 

  29. Galvin-King P, Haughey SA, Elliott CT (2018) Herb and spice fraud; the drivers, challenges and detection. Food Control 88:85–97

    Article  CAS  Google Scholar 

  30. Huck C, Pezzei CK, Huck-Pezzei VAC (2016) An industry perspective of food fraud. Curr Opin Food Sci 10:32–37

    Article  Google Scholar 

  31. Astill J, Dara R, Campbell M, Farber JF, Fraser E, Sharif S, Yadaf R (2019) Transparency in food supply chains: A review of enabling technology solutions. Trends Food Sci Technol 91:240–247

    Article  CAS  Google Scholar 

  32. Dennis MJ (1998) Recent developments in food authentication. Analyst 123(9):151–156

    Article  Google Scholar 

  33. Kamal M, Karoui R (2015) Analytical methods coupled with chemometric tools for determining the authenticity and detecting the adulteration of dairy products: A review. Trends Food Sci Technol 46(1):27–48

    Article  CAS  Google Scholar 

  34. Luykx DMAM, Van Ruth SM (2008) An overview of analytical methods for determining the geographical origin of food products. Food Chem 107(2):897–911

    Article  CAS  Google Scholar 

  35. Camin F, Bontempo L, Heinrich K, Horacek M, Kelly SD, Schlicht C, Rossmann A (2007) Multi-element (H, C, N, S) stable isotope characteristics of lamb meat from different European regions. Anal Bioanal Chem 389(1):309–320

    Article  CAS  PubMed  Google Scholar 

  36. Camin F, Boner M, Bontempo L, Fauhl-Hassek C, Kelly SD, Riedl J, Rossmann A (2017) Stable isotope techniques for verifying the declared geographical origin of food in legal cases. Trends Food Sci Technol 61:176–187

    Article  CAS  Google Scholar 

  37. Fry B (2006) Stable isotope ecology. Springer, New York

    Book  Google Scholar 

  38. Kelly S, Heaton K, Hoogewerff J (2005) Tracing the geographical origin of food: The application of multi-element and multi-isotope analysis. Trends Food Sci Technol 16(12):555–567

    Article  CAS  Google Scholar 

  39. Bec KB, Huck CW (2019) Breakthrough potential in near-infrared spectroscopy: spectra simulation. A review of recent developments. Front Chem 7:48. https://doi.org/10.3389/fchem.2019.00048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bec KB, Grabska J, Huck CW (2020) Review near-infrared spectroscopy in bio-applications. Molecules 25:2948. https://doi.org/10.3390/molecules25122948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cortes V, Blasco J, Aleixos N, Cubero S, Talensa P (2019) Monitoring strategies for quality control of agricultural products using visible and near-infrared spectroscopy: A review. Trends Food Sci Technol 85:138–148

    Article  CAS  Google Scholar 

  42. Indrayanto G (2018) Recent development of quality control methods for herbal derived drug preparations. Nat Prod Commun 13(12):1599–1606

    Google Scholar 

  43. Lohumi S, Lee S, Lee H, Cho B-K (2015) A review of vibrational spectroscopic techniques for the detection of food authenticity and adulteration. Trends Food Sci Technol 46(1):85–98

    Article  CAS  Google Scholar 

  44. Dasgupta N, Ranjan S, Mundekkad D, Ramalingam C, Shanker R, Kumar A (2015) Nanotechnoloy in agrofood: from field to plate. Food Res Int 69:381–400

    Article  Google Scholar 

  45. Wadood SA, Boli G, **aowen Z, Raza A, Yimin W (2020) Geographical discrimination of Chinese winter wheat using volatile compound analysis by HS-SPME/GC-MS coupled with multivariate statistical analysis. J Mass Spectrom 55:4453

    Article  Google Scholar 

  46. Ahearn MC, Armbruster W, Young R (2016) Big data’s potential to improve food supply chain environmental sustainability and food safety. Int Food Agribus Manag Rev 19:Special Issue A

    Google Scholar 

  47. McGrath TF, Haughey SA, Patterson J, Fauhl-Hassek C, Donarski J, Alewijn M, van Ruth S, Elliot CT (2018) What are the scientific challenges in moving from targeted to non-targeted methods for food fraud testing and how can be addressed? Spectroscopy case study. Trends Food Sci Technol 76:38–55

    Article  CAS  Google Scholar 

  48. Bureau S, Cozzolino D, Clark CJ (2019) Contributions of Fourier-transform mid infrared (FT-MIR) spectroscopy to the study of fruit and vegetables: A review. Postharvest Biol Technol 148:1–14

    Article  CAS  Google Scholar 

  49. Cozzolino D (2019) Food for thought: the digital disruption and the future of food production. Curr Res Nutr Food Sci 7:607–609

    Article  Google Scholar 

  50. Truong VK, Dupont M, Elbourne A, Gangadoo S, Rajapaksha Pathirannahalage P, Cheeseman S, Chapman J, Cozzolino D (2019) From academia to reality check: a theoretical framework on the use of chemometric. Foods 8:1–10

    Article  Google Scholar 

  51. Bro R, Smilde AK (2014) Principal component analysis. Anal Methods 6(9):2812–2831

    Article  CAS  Google Scholar 

  52. Oliveri P, Di Egidio V, Woodcock T, Downey G (2011) Application of class-modelling techniques to near infrared data for food authentication purposes. Food Chem 125:1450–1456

    Article  CAS  Google Scholar 

  53. Saeys W, Do Trong NN, Van Beers R, Nicolai BM (2019) Multivariate calibration of spectroscopic sensors for postharvest quality evaluation: A review. Postharvest Biol Technol 158:110981

    Article  CAS  Google Scholar 

  54. Szymańska E, Gerretzen J, Engel J, Geurts B, Blanchet L, Buydens LM (2015) Chemometrics and qualitative analysis have a vibrant relationship. TrAC Trends Anal Chem 69:34–51

    Article  Google Scholar 

  55. Zhang K, Yang J, Qiao Z, Cao X, Luo Q, Zhao J, Wang F, Zhang W (2019) Assessment of β-glucans, phenols, flavor and volatile profiles of hulless barley wine originating from highland areas of China. Food Chem 293:32–40

    Article  CAS  PubMed  Google Scholar 

  56. Lim DK, Mo C, Lee DK, Long NP, Lim J, Kwon SW (2018) Non-destructive profiling of volatile organic compounds using HS-SPME/GC–MS and its application for the geographical discrimination of white rice. J Food Drug Anal 26:260–267

    Article  CAS  PubMed  Google Scholar 

  57. Hoffmann JF, Zaczuk Bassinello P, Filho JMC, da Silva LI, Elias MC, Takeoka GR, Vanier NL (2019) Volatile compounds profile of Brazilian aromatic brown rice genotypes and its cooking quality characteristics. Cereal Chem 96:292–301

    CAS  Google Scholar 

  58. Zhang X, Dai Z, Fan X, Liu M, Ma J, Shang W, Liu J, Strappe P, Blanchard C, Zhou Z (2020) A study on volatile metabolites screening by HS-SPME-GC-MS and HS-GC-IMS for discrimination and characterization of white and yellowed rice. Cereal Chem 97:496–504

    Article  CAS  Google Scholar 

  59. Ratnasekhar C, Chevallier O, McCarrona P, McGratha TF, Duy DWLND, Kapil AP, McBride M, Elliott CT (2021) Metabolomic fingerprinting of volatile organic compounds for the geographical discrimination of rice samples from China, Vietnam and India. Food Chem 334:127553

    Article  Google Scholar 

  60. Xu J, Zhong J, Zhang B, Li X (2021) Green labelled rice shows a higher nutritional and physiochemical quality than conventional rice in China. Foods 10:915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Starr G, Petersen MA, Jespersen BM, Hansen AS (2015) Variation of volatile compounds among wheat varieties and landraces. Food Chem 174:527–537

    Article  CAS  PubMed  Google Scholar 

  62. Kessler N, Bonte A, Albaum SP, Mäder P, Messmer M, Goesmann A, Niehaus K, Langenkämper G, Nattkemper TW (2015) Learning to classify organic and conventional wheat – a machine learning driven approach using the MeltDB 2.0 metabolomics analysis platform. Front Bioeng. Biotechnol 3:1

    Google Scholar 

  63. De Flaviis R, Sacchetti G, Mastrocola D (2021) Wheat classification according to its origin by an implemented volatile organic compounds analysis. Food Chem 341:128217

    Article  PubMed  Google Scholar 

  64. De Flaviis R, Mutarutwa D, Sacchetti G, Mastrocola D (2022) Could environmental effect overcome genetic? A chemometric study on wheat volatiles fingerprint. Food Chem 372:131236

    Article  PubMed  Google Scholar 

  65. Giannetti V, Boccacci Mariani M, Mannino P (2016) Characterization of the authenticity of pasta di gragnano protected geographical indication through flavor component analysis by gas chromatography–mass spectrometry and chemometric tools. J AOAC Int 99(5):1

    Article  Google Scholar 

  66. Saa DLT, Nissen L, Gianotti A (2019) Metabolomic approach to study the impact of flour type and fermentation process on volatile profile of bakery products. Food Res Int 119:510–516

    Article  CAS  PubMed  Google Scholar 

  67. Hussein AMS, Ibrahim GE (2019) Effects of various brans on quality and volatile compounds of bread. Foods Raw Mater 7(1):35–41

    Google Scholar 

  68. Pastor K, Ilić M, Kojić J, Ačanski M, Dj V (2022) Classification of cereal flour by gas chromatography –mass spectrometry (gcms) liposoluble fingerprints and automated machine learning. Anal Lett

    Google Scholar 

  69. Pastor K, Zorlu G, Osman S, Öztürk Sevdik Y, Kojić J, Nastić N, Senyuva H (2022) Chemometric fatty acidomics to distinguish between yeast and sourdough breads from Serbia and Turkey. J Food Nutr Res 61(4):339–351

    CAS  Google Scholar 

  70. Pastor K, Pezo L, Vujić D, Jovanović D, Ačanski M (2018) Discriminating cereal and pseudocereal species using a binary system of GC–MS data—a pattern recognition approach. J Serb Chem Soc 83(3):317–329

    Article  CAS  Google Scholar 

  71. Pastor K, Ilić M, Vujić D, Jovanović D, Ačanski M (2020) Characterization of fatty acids in cereals and oilseeds from the Republic of Serbia by gas chromatography–mass spectrometry (GC/MS) with chemometrics. Anal Lett 53(8):1177–1189

    Article  CAS  Google Scholar 

  72. Pastor K, Ačanski M, Vujić Đ (2019) Chapter 3: a review of adulteration versus authentication of flour. In: Preedy VR, Watson RR (eds) Flour and breads and their fortification in health and disease prevention, 2nd edn. Academic, Elsevier, London, pp 21–36

    Chapter  Google Scholar 

  73. Psodorov D, Ačanski M, Psodorov D, Vujić D, Pastor K (2015) Determining the content of wheat and buckwheat flour in bread using GC-MS system and multivariate analysis. J Food Nutr Res 54(2):179–183

    CAS  Google Scholar 

  74. Tres A, Heenan SP, van Ruth S (2014) Authentication of dried distilled grain with solubles (DDGS) by fatty acid and volatile profiling. LWT - Food Sci Technol 59:215–221

    Article  CAS  Google Scholar 

  75. Primrose S, Woolfe M, Rollinson S (2010) Food forensics: methods for determining the authenticity of foodstuffs. Trends Food Sci Technol 21(12):582–590

    Article  CAS  Google Scholar 

  76. Friel S, Schram A, Townsend B (2020) The nexus between international trade, food systems, malnutrition and climate change. Nat Food 1:51–58

    Article  Google Scholar 

  77. National Academies of Sciences, Engineering, and Medicine (2020) Innovations in the food system: exploring the future of food, proceedings of a workshop. The National Academies Press, Washington, DC

    Google Scholar 

  78. Olsen O, Borit M (2018) The components of a food traceability system. Trends Food Sci Technol 77:143–149

    Article  Google Scholar 

  79. Ruiz-Garcia L, Steinberger G, Rothmund M (2009) A model and prototype implementation for tracking and tracing agricultural batch products along the food chain. Food Control 21:112–121

    Article  Google Scholar 

  80. Manning L, Soon JM (2016) Food safety, food fraud, and food defense: a fast evolving literature. J Food Sci 81:823–834

    Article  Google Scholar 

Download references

Acknowledgments

The support of QAAFI and the University of Queensland is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Cozzolino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cozzolino, D. (2023). Cereals, Pseudocereals, Flour, and Bakery Products. In: Pastor, K. (eds) Emerging Food Authentication Methodologies Using GC/MS. Springer, Cham. https://doi.org/10.1007/978-3-031-30288-6_3

Download citation

Publish with us

Policies and ethics

Navigation