Abstract

This chapter presents general applications of gas chromatography/mass spectrometry (GC/MS) for the determination of the authenticity and quality of fruit juices. The contents of the chapter are mainly based on the determination of the botanical origin, geographical origin, verifying organic cultivation, and detection of foreign matter in fruit juices. Today, the authenticity issue comes into prominence with especially financial and industrial concerns. The GC/MS technique provides high sensitivity, reliability, and precision for the quality control of fruit juices. In this chapter, the GC/MS provided information about the volatile compounds of popular fruits and fruit juices, such as apple juice, citrus juice, orange juice, and fashionable fruit juices. Presented applications highlighted the importance of the determination of volatile compounds and the volatile profile of fruits and fruit juices to maintain food integrity in the food supply chain from farm to fork.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APCI-MS:

Atmospheric-pressure chemical ionization mass spectrometry

BMIS:

Beet medium invert syrup

CBNE:

Carbon-bound non-exchangeable hydrogen

GC/MS:

Gas chromatography/mass spectrometry

HCA:

Hierarchical cluster analysis

HPLC:

High-performance liquid chromatography

HR-MS:

High-resolution mass spectrometry

HS:

Headspace

IRMS:

Isotope-ratio mass spectrometry

LDA:

Linear discriminant analysis

NMR:

Nuclear magnetic resonance spectroscopy

PCA:

Principal component analysis

PLS-DA:

Partial least squares discriminant analysis

SDE:

Simultaneous distillation extraction

SLDA:

Stepwise linear discriminant analysis

SPME:

Solid-phase microextraction

VOCs:

Volatile organic compounds

References

  1. McVey C, Elliott CT, Cannavan A, Kelly SD, Petchkongkaew A, Haughey SA (2021) Portable spectroscopy for high throughput food authenticity screening: advancements in technology and integration into digital traceability systems. Trends Food Sci Technol 118(PB):777–790. https://doi.org/10.1016/j.tifs.2021.11.003

    Article  CAS  Google Scholar 

  2. Johnson R (2014) Food fraud and “Economically motivated adulteration” of food and food ingredients. Food fraud and adulterated ingredients: background, issues, and federal action, 1–56. doi:https://doi.org/10.1177/014860717700100306

  3. Carcea M, Brereton P, Hsu R, Kelly S, Marmiroli N, Melini F, Soukoulis C, Wen** D (2009) Food authenticity assessment: ensuring compliance with food legislation and traceability requirements. Qual Assur Saf Crops Foods 1(2):93–100. https://doi.org/10.1111/j.1757-837X.2009.00011.x

    Article  Google Scholar 

  4. Lehotay SJ, Hajšlová J (2002) Application of gas chromatography in food analysis. TrAC Trends Anal Chem 21(9–10):686–697. https://doi.org/10.1016/S0165-9936(02)00805-1

    Article  CAS  Google Scholar 

  5. Kvitvang HFN, Andreassen T, Adam T, Villas-Bôas SG, Bruheim P (2011) Highly sensitive GC/MS/MS method for quantitation of amino and nonamino organic acids. Anal Chem 83(7):2705–2711. https://doi.org/10.1021/ac103245b

    Article  CAS  PubMed  Google Scholar 

  6. Tulukcu E, Cebi N, Sagdic O (2019) Chemical Fingerprinting of Seeds of Some Salvia Species in Turkey by Using GC-MS and FTIR. Foods 8(4):1–12

    Article  Google Scholar 

  7. Medina S, Perestrelo R, Silva P, Pereira JAM, Câmara JS (2019b) Current trends and recent advances on food authenticity technologies and chemometric approaches. Trends Food Sci Technol 85(December 2018):163–176. https://doi.org/10.1016/j.tifs.2019.01.017

    Article  CAS  Google Scholar 

  8. Cheng H, Chen J, Chen S, Wu D, Liu D, Ye X (2015) Characterization of aroma-active volatiles in three Chinese bayberry (Myrica rubra) cultivars using GC-MS-olfactometry and an electronic nose combined with principal component analysis. Food Res Int 72:8–15. https://doi.org/10.1016/j.foodres.2015.03.006

    Article  CAS  Google Scholar 

  9. Henning SM, Yang J, Shao P, Lee RP, Huang J, Ly A, Hsu M, Lu QY, Thames G, Heber D, Li Z (2017) Health benefit of vegetable/fruit juice-based diet: role of microbiome /631/326/41/2533/692/308/409/9/45/23 article. Sci Rep 7(1):1–9. https://doi.org/10.1038/s41598-017-02200-6

    Article  CAS  Google Scholar 

  10. Dasenaki ME, Thomaidis NS (2019) Quality and authenticity control of fruit juices - a review. Molecules 24(6):1014. https://doi.org/10.3390/molecules24061014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cheng H, Chen J, Li X, Pan J, Xue SJ, Liu D, Ye X (2015) Differentiation of the volatile profiles of Chinese bayberry cultivars during storage by HS-SPME-GC/MS combined with principal component analysis. Postharvest Biol Technol 100:59–72. https://doi.org/10.1016/j.postharvbio.2014.09.003

    Article  CAS  Google Scholar 

  12. Giannetti V, Boccacci Mariani M, Mannino P, Marini F (2017) Volatile fraction analysis by HS-SPME/GC-MS and chemometric modeling for traceability of apples cultivated in the Northeast Italy. Food Control 78:215–221. https://doi.org/10.1016/j.foodcont.2017.02.036

    Article  CAS  Google Scholar 

  13. Ghaste M, Narduzzi L, Carlin S, Vrhovsek U, Shulaev V, Mattivi F (2015) Chemical composition of volatile aroma metabolites and their glycosylated precursors that can uniquely differentiate individual grape cultivars. Food Chem 188:309–319. https://doi.org/10.1016/j.foodchem.2015.04.056

    Article  CAS  PubMed  Google Scholar 

  14. Cuevas FJ, Moreno-Rojas JM, Ruiz-Moreno MJ (2017) Assessing a traceability technique in fresh oranges (Citrus sinensis L. Osbeck) with an HS-SPME-GC-MS method. Towards a volatile characterisation of organic oranges. Food Chem 221:1930–1938. https://doi.org/10.1016/j.foodchem.2016.11.156

    Article  CAS  PubMed  Google Scholar 

  15. Reinhard H, Sager F, Zoller O (2008) Citrus juice classification by SPME-GC-MS and electronic nose measurements. LWT 41(10):1906–1912. https://doi.org/10.1016/j.lwt.2007.11.012

    Article  CAS  Google Scholar 

  16. European Commission (2012) Commission Regulation (EU) No 432/2012. Establishing a list of permitted health claims made on foods, other than those referring to the reduction of disease risk and to children’s development and health. Off J Eur Union 136:4–40

    Google Scholar 

  17. Drivelos SA, Georgiou CA (2012) Multi-element and multi-isotope-ratio analysis to determine the geographical origin of foods in the European Union. TrAC Trends Anal Chem 40:38–51. https://doi.org/10.1016/j.trac.2012.08.003

    Article  CAS  Google Scholar 

  18. Kamiloglu S (2019) Authenticity and traceability in beverages. Food Chem 277:12–24. https://doi.org/10.1016/j.foodchem.2018.10.091

    Article  CAS  PubMed  Google Scholar 

  19. Granato D, Putnik P, Kovačević DB, Santos JS, Calado V, Rocha RS, Da Cruz AG, Jarvis B, Rodionova OY, Pomerantsev A (2018) Trends in chemometrics: food authentication, microbiology, and effects of processing. Compr Rev Food Sci Food Saf 00:1–15. https://doi.org/10.1111/1541-4337.12341

    Article  CAS  Google Scholar 

  20. Matera JA, Cruz AG, Raices RSL, Silva MC, Nogueira LC, Quitério SL, Cavalcanti RN, Freiras MQ, Conte Júnior CA (2014) Discrimination of Brazilian artisanal and inspected pork sausages: application of unsupervised, linear and non-linear supervised chemometric methods. Food Res Int 64:380–386. https://doi.org/10.1016/j.foodres.2014.07.003

    Article  CAS  PubMed  Google Scholar 

  21. Souza SS, Cruz AG, Walter EHM, Faria JAF, Celeghini RMS, Ferreira MMC, Granato D, Sant’Ana, A. de S. (2011) Monitoring the authenticity of Brazilian UHT milk: a chemometric approach. Food Chem 124(2):692–695. https://doi.org/10.1016/j.foodchem.2010.06.074

    Article  CAS  Google Scholar 

  22. Cubero-Leon E, Peñalver R, Maquet A (2014) Review on metabolomics for food authentication. Food Res Int 60:95–107. https://doi.org/10.1016/j.foodres.2013.11.041

    Article  CAS  Google Scholar 

  23. Danezis GP, Tsagkaris AS, Brusic V, Georgiou CA (2016) Food authentication: state of the art and prospects. In: Current opinion in food science, vol 10. Elsevier Ltd., pp 22–31. https://doi.org/10.1016/j.cofs.2016.07.003

    Chapter  Google Scholar 

  24. Ruiz Perez-Cacho P, Rouseff R (2008) Processing and storage effects on orange juice aroma: a review. J Agric Food Chem 56(21):9785–9796. https://doi.org/10.1021/jf801244j

    Article  CAS  Google Scholar 

  25. Guo J, Yue T, Yuan Y (2012) Feature selection and recognition from nonspecific volatile profiles for discrimination of apple juices according to variety and geographical origin. J Food Sci 77(10). https://doi.org/10.1111/j.1750-3841.2012.02914.x

  26. Gan HH, Soukoulis C, Fisk I (2014) Atmospheric pressure chemical ionisation mass spectrometry analysis linked with chemometrics for food classification - a case study: geographical provenance and cultivar classification of monovarietal clarified apple juices. Food Chem 146:149–156. https://doi.org/10.1016/j.foodchem.2013.09.024

    Article  CAS  PubMed  Google Scholar 

  27. Bat KB, Eler K, Mazej D, Vodopivec BM, Mulič I, Kump P, Ogrinc N (2016) Isotopic and elemental characterisation of Slovenian apple juice according to geographical origin: preliminary results. Food Chem 203: 86–94. https://doi.org/10.1016/j.foodchem.2016.02.039

  28. Guo J, Yue T, Yuan Y, Sun N, Liu P (2020) Characterization of volatile and sensory profiles of apple juices to trace fruit origins and investigation of the relationship between the aroma properties and volatile constituents. LWT 124:109203. https://doi.org/10.1016/j.lwt.2020.109203

    Article  CAS  Google Scholar 

  29. Ruiz ML, Castillo D, Caja MM, Blanch GP, Herraiz M (2003) Enantiomeric distribution of chiral compounds in orange juices according to their geographical origins. J Food Prot 66(8):1448–1454. http://meridian.allenpress.com/jfp/article-pdf/66/8/1448/1675777/0362-028x-66_8_1448.pdf

    Article  Google Scholar 

  30. Karabagias VK, Karabagias IK, Louppis A, Badeka A, Kontominas MG, Papastephanou C (2019) Valorization of prickly pear juice geographical origin based on mineral and volatile compound contents using LDA. Foods 8(4):123. https://doi.org/10.3390/foods8040123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Luykx DMAM, van Ruth SM (2008) An overview of analytical methods for determining the geographical origin of food products. Food Chem 107(2):897–911. https://doi.org/10.1016/j.foodchem.2007.09.038

    Article  CAS  Google Scholar 

  32. Tzouros NE, Arvanitoyannis IS (2001) Agricultural produces: synopsis of employed quality control methods for the authentication of foods and application of chemometrics for the classification of foods according to their variety or geographical origin. Crit Rev Food Sci Nutr 41(4):287–319. https://doi.org/10.1080/20014091091823

    Article  CAS  PubMed  Google Scholar 

  33. Herrera Alvarez LV, Zielinski AAF, Alberti A, Nogueira A (2017) Monitoring of the phenolic compounds and in vitro antioxidant activity of apple beverages according to geographical origin and their type: a chemometric study. LWT 84:385–393. https://doi.org/10.1016/j.lwt.2017.05.078

    Article  CAS  Google Scholar 

  34. Li Y, Liang L, Xu C, Yang T, Wang Y (2021) UPLC-Q-TOF/MS-based untargeted metabolomics for discrimination of navel oranges from different geographical origins of China. LWT 137(September 2020):110382. https://doi.org/10.1016/j.lwt.2020.110382

    Article  CAS  Google Scholar 

  35. Capuano E, Boerrigter-Eenling R, van der Veer G, van Ruth SM (2013) Analytical authentication of organic products: an overview of markers. J Sci Food Agric 93(1):12–28. https://doi.org/10.1002/jsfa.5914

    Article  CAS  PubMed  Google Scholar 

  36. Cuevas FJ, Pereira-Caro G, Moreno-Rojas JM, Muñoz-Redondo JM, Ruiz-Moreno MJ (2017) Assessment of premium organic orange juices authenticity using HPLC-HR-MS and HS-SPME-GC-MS combining data fusion and chemometrics. Food Control 82:203–211. https://doi.org/10.1016/j.foodcont.2017.06.031

    Article  CAS  Google Scholar 

  37. Riu-Aumatell M, Castellari M, López-Tamames E, Galassi S, Buxaderas S (2004) Characterisation of volatile compounds of fruit juices and nectars by HS/SPME and GC/MS. Food Chem 87(4):627–637. https://doi.org/10.1016/j.foodchem.2003.12.033

    Article  CAS  Google Scholar 

  38. Röhlig RM, Engel KH (2010) Influence of the input system (Conventional versus organic farming) on metabolite profiles of maize (Zea mays) kernels. J Agric Food Chem 58(5):3022–3030. https://doi.org/10.1021/jf904101g

    Article  CAS  PubMed  Google Scholar 

  39. Alves Filho EG, Silva LMA, Wurlitzer NJ, Fernandes FAN, Fonteles TV, Rodrigues S, de Brito ES (2020) An integrated analytical approach based on NMR, LC–MS and GC–MS to evaluate thermal and non-thermal processing of cashew apple juice. Food Chem 309:125761. https://doi.org/10.1016/j.foodchem.2019.125761

    Article  CAS  PubMed  Google Scholar 

  40. Varlet V, Serot T, Prost C (2009) Smoke flavoring technology in seafood. In: Handbook of seafood and seafood products analysis. CRC Press, pp 251–272

    Google Scholar 

  41. Brendel R, Schwolow S, Rohn S, Weller P (2021) Volatilomic profiling of citrus juices by dual-detection HS-GC-MS-IMS and machine learning - an alternative authentication approach. J Agric Food Chem 69(5):1727–1738. https://doi.org/10.1021/acs.jafc.0c07447

    Article  CAS  PubMed  Google Scholar 

  42. Mentana A, Conte A, Del Nobile MA, Quinto M, Centonze D (2019) Investigating the effects of mild preservation technology on perishable foods by volatolomics: The case study of ready-to-cook tuna-burgers. LWT 115:108425. https://doi.org/10.1016/j.lwt.2019.108425

    Article  CAS  Google Scholar 

  43. Murgia A, Scano P, Cacciabue R, Dessì D, Caboni P (2019) GC-MS metabolomics comparison of yoghurts from sheep’s and goats’ milk. Int Dairy J 96:44–49. https://doi.org/10.1016/j.idairyj.2019.03.012

    Article  CAS  Google Scholar 

  44. Zhang J, Liu H, Sun R, Zhao Y, **ng R, Yu N, Deng T, Ni X, Chen Y (2022) Volatolomics approach for authentication of not-from-concentrate (NFC) orange juice based on characteristic volatile markers using headspace solid phase microextraction (HS-SPME) combined with GC-MS. Food Control 136:108856. https://doi.org/10.1016/j.foodcont.2022.108856

    Article  CAS  Google Scholar 

  45. de Lourdes Cardeal Z, Guimarães EM, Parreira FV (2005) Analysis of volatile compounds in some typical Brazilian fruits and juices by SPME-GC method. Food Addit Contam 22(6):508–513. https://doi.org/10.1080/02652030500132893

    Article  CAS  PubMed  Google Scholar 

  46. Mutyam S, Chilakala S, Tallapally M, Upadhyayula VVR (2021) Gas chromatography–mass spectrometric determination of organic acids in fruit juices by multiwalled carbon nanotube–based ion-pair dispersive solid-phase extraction and in situ butylation. Rapid Commun Mass Spectrom 35(19). https://doi.org/10.1002/rcm.9165

  47. Medina S, Perestrelo R, Santos R, Pereira R, Câmara JS (2019a) Differential volatile organic compounds signatures of apple juices from Madeira Island according to variety and geographical origin. Microchem J 150:104094. https://doi.org/10.1016/j.microc.2019.104094

    Article  CAS  Google Scholar 

  48. Abrahim A, Cannavan A, Kelly SD (2020) Stable isotope analysis of non-exchangeable hydrogen in carbohydrates derivatised with N-methyl-bis-trifluoroacetamide by gas chromatography – chromium silver reduction/High temperature Conversion-isotope ratio mass spectrometry (GC-CrAg/HTC-IRMS). Food Chem 318:126413. https://doi.org/10.1016/j.foodchem.2020.126413

    Article  CAS  PubMed  Google Scholar 

  49. Kelly SD, Rhodes C, Lofthouse JH, Anderson D, Burwood CE, Dennis MJ, Brereton P (2003) Detection of sugar syrups in apple juice by δ2H‰ and δ13C‰ analysis of hexamethylenetetramine prepared from fructose. J Agric Food Chem 51(7):1801–1806. https://doi.org/10.1021/jf021044p

    Article  CAS  PubMed  Google Scholar 

  50. Bocharova O, Reshta S, Bocharova M, Eshtokin V (2017) Evaluation of orange juice authenticity in respect of added food flavors using dilution index. J Food Process Preserv 41(6). https://doi.org/10.1111/jfpp.13221

  51. Lachenmeier K, Mußhoff F, Madea B, Reusch H, Lachenmeier DW (2006) Authentication of noni (Morinda citrifolia) juice. Deutsche Lebensmittelrundschau 102(2):58–61

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nur Cebi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cebi, N., Bekiroglu, H., Tekin-Cakmak, Z.H., Bozkurt, F., Karasu, S. (2023). Fruit Juices. In: Pastor, K. (eds) Emerging Food Authentication Methodologies Using GC/MS. Springer, Cham. https://doi.org/10.1007/978-3-031-30288-6_10

Download citation

Publish with us

Policies and ethics

Navigation