Gas Chromatography and Mass Spectrometry: The Technique

  • Chapter
  • First Online:
Emerging Food Authentication Methodologies Using GC/MS

Abstract

Combining the techniques of gas chromatography and mass spectrometry provides conjunction with a confirmatory character, which has a great power of detection, identification, and quantification of a wide range of chemical compounds. This chapter serves as a brief description of gas chromatography-mass spectrometry (GC/MS) instruments and their components, variations, and suitability for specific applications. Various gas chromatography techniques, such as standard GC or multidimensional GC, but also different types of mass spectrometers, ranging from classic quadrupole systems to high-resolution mass spectrometers, will be presented. The chapter encompasses corresponding merits and drawbacks, as well as references to subsequent chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CI:

Chemical ionization

GC:

Gas chromatography

GC×GC:

Two-dimensional gas chromatography

EI:

Electron ionization

IR:

Isotope-ratio

IT:

Ion-trap

IUPAC:

The International Union of Pure and Applied Chemistry

LC:

Liquid chromatography

M:

Magnetic sector mass analyzer

MS:

Mass spectrometry

MS/MS:

Tandem or hybrid mass spectrometry

m/z :

Mass-to-charge ratio

NCI:

Negative chemical ionization

PCI:

Positive chemical ionization

PTV:

Programmed temperature vaporizing

SFC:

Supercritical fluid chromatography

TOF:

Time-of-flight

Q:

Quadrupole

References

  1. McNaught AD, Wilkinson A (1997) IUPAC compendium of chemical terminology, 2nd edn. Blackwell Science, Oxford

    Google Scholar 

  2. Dunivannt F, Ginsbach J (2011) Gas chromatography, liquid chromatography, capillary electrophoresis – mass spectrometry, 3rd edn. Whitman College, Walla Walla, WA

    Google Scholar 

  3. Eiceman G (2006) Instrumentation of gas chromatography. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, pp 1–9. https://doi.org/10.1002/9780470027318.a5505

    Chapter  Google Scholar 

  4. Niessen W (2001) Current practice of gas chromatography-mass spectrometry, Chromatographic science series. Marcel Dekker, New York

    Book  Google Scholar 

  5. Guo X, Lankmayr E (2012) Hyphenated techniques in gas chromatography. In: Mohd MA (ed) Advanced gas chromatography—progress in agricultural, biomedical and industrial applications. IntechOpen, Rijeka, pp 1–26. Available from https://www.intechopen.com/chapters/32813

    Google Scholar 

  6. Hübschmann HJ (2009) Handbook of GC/MS: fundamentals and applications, 2nd edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  7. Hübschmann H-J (2015) Handbook of GC-MS fundamentals and applications, 3rd edn. Wiley-WCH, Verlag GmbH & Co., Weinheim

    Book  Google Scholar 

  8. Brezo T, Kravić S, Suturović Z, Karišik-Đurović A, Vitas J, Malbaša R, Milanović S (2011) Influence of kombucha inoculum on the fatty acid composition of fermented milk products. Food industry, Milk and dairy products 22(1):21–24

    CAS  Google Scholar 

  9. Đurović A, Kravić S, Stojanović Z, Lužaić T, Romanić R, Grahovac N (2021) Characterisation of the fatty acid profile of blended sunflower and flaxseed oil from the aspect of nutritional quality factors. J Edible Oil Ind Uljarstvo 52(1):35–41

    Google Scholar 

  10. Kravić S, Suturović Z, Švarc-Gajić J, Stojanović Z, Pucarević M (2010) Determination of trans fatty acids in foodstuffs by gas chromatography-mass spectrometry after simultaneous microwave assisted extraction-esterification. J Serb Chem Soc 75(6):803–812

    Article  Google Scholar 

  11. Kravić S, Marjanović N, Suturović Z, Švarc-Gajić J, Stojanović Z, Pucarević M (2010) Determination of trans fatty acid content of Serbian shortening by gas chromatography-mass spectrometry. Acta Alimentaria 39(4):413–423

    Article  Google Scholar 

  12. Kravić S, Suturović Z, Švarc-Gajić J, Stojanović Z, Pucarević M, Nikolić I (2011) Fatty acid composition including trans isomers of Serbian biscuits. Hemijska industija 65(2):139–146

    Article  Google Scholar 

  13. Kravić S, Brezo T, Karišik-Đurović A, Suturović Z, Milanović S, Švarc-Gajić J, Stojanović Z (2012) Fatty acid composition of goat’s cheeses. Food industry, Milk and dairy products 23(1):49–52

    Google Scholar 

  14. Pastor K, Pezo L, Vujić Đ, Jovanović Đ, Ačanski M (2018) Discriminating cereal and pseudocereal species using a binary system of GC/MS data: A pattern recognition approach. J Serb Chem Soc 83(3):317–329

    Article  CAS  Google Scholar 

  15. Pastor K, Vujasinović V, Marjanović-Jeromela A, Vujić Đ, Jovanović Đ (2019) Gas chromatography-mass spectrometry system applied to determine botanical origin of various types of edible vegetable oils. J Serb Chem Soc 84(9):1017–1025

    Article  CAS  Google Scholar 

  16. Pastor K, Ilić M, Vujić D, Jovanović D, Ačanski M (2020) Characterization of fatty acids in cereals and oilseeds from the Republic of Serbia by gas chromatography – mass spectrometry (GC/MS) with chemometrics. Anal Lett 53(8):1177–1189

    Article  CAS  Google Scholar 

  17. Pastor K, Ilić M, Kojić J, Ačanski M, Vujić D (2022) Classification of cereal flour by gas chromatography – mass spectrometry (GCMS) liposoluble fingerprints and automated machine learning. Anal Lett 55(14):2220–2226. https://doi.org/10.1080/00032719.2022.2050921

    Article  CAS  Google Scholar 

  18. Vukić D, Kravić S, Milanović S, Iličić M, Kanurić K, Đurović A, Vukić V (2019) The effect of non-conventional starter culture on lipid nutritional quality of fermented dairy products. Acta Periodica Technologica (APTEFF) 50:324–331

    Article  Google Scholar 

  19. Zhang L, Li P, Sun X, Wang X, Xu B, Wang X, Ma F, Zhang Q, Ding X (2014) Classification and adulteration detection of vegetable oils based on fatty acid profiles. J Agric Food Chem 62:8745–8751

    Article  CAS  PubMed  Google Scholar 

  20. Pastor K, Ačanski M, Vujić Đ, Bekavac G, Milovac S, Kravić S (2016) Rapid method for small grain and corn flour authentication using GC/EI–MS and multivariate analysis. Food Anal Methods 9(2):443–450

    Article  Google Scholar 

  21. Pastor K, Ačanski M, Vujić Đ, Kondić-Špika A (2016) Binary simple sugar profiling in corn and small grain flour authentication using GC/EI-qMS approach. Chromatographia 79(21):1553–1559

    Article  CAS  Google Scholar 

  22. Adahchour M, van Stee LLP, Beens J, Vreuls RJJ, Batenburg MA, Brinkman UAT (2003) Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometric detection for the trace analysis of flavour compounds in food. J Chromatogr A 1019(1–2):157–172

    Article  CAS  PubMed  Google Scholar 

  23. Allissandrakis E, Tarantilis PA, Harizanis PC, Pollisiou M (2007) Comparison of the volatile composition in thyme honeys from several origins in Greece. J Agric Food Chem 55:8152–8157

    Article  Google Scholar 

  24. Cajka T, Hajšlová J, Cochran J, Holadová K, Klimánková E (2007) Solid phase microextraction–comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry for the analysis of honey volatiles. J Sep Sci 30:534–546

    Article  CAS  PubMed  Google Scholar 

  25. Louw S (2021) Recent trends in the chromatographic analysis of volatile flavor and fragrance compounds: Annual review 2020. Anal Sci Adv 2(3–4):157–170

    Article  Google Scholar 

  26. Belarbi S, Vivier M, Zaghouani W, De Sloovere A, Agasse-Peulon V, Cardinael P (2021) Comparison of new approach of GC-HRMS (Q-Orbitrap) to GC–MS/MS (triple-quadrupole) in analyzing the pesticide residues and contaminants in complex food matrices. Food Chem 359:129932

    Article  CAS  PubMed  Google Scholar 

  27. Parthasarathy S, Soundararajan P, Krishnan N, Karuppiah KM, Devadasan V, Prabhu D, Raman P (2022) Detection of adulterants from common edible oils by GC–MS. Biomass conversion and biorefinery, pp 1–21

    Google Scholar 

  28. Adebo OA, Oyeyinka SA, Adebiyi JA, Feng X, Wilkin JD, Kewuyemi YO et al (2021) Application of gas chromatography–mass spectrometry (GC-MS)-based metabolomics for the study of fermented cereal and legume foods: A review. Int J Food Sci Technol 56(4):1514–1534

    Article  CAS  Google Scholar 

  29. Rouessac F, Rouessac A (2007) Chemical analysis: modern instrumentation and methods and techniques, 2nd edn. Wiley, Chichester

    Google Scholar 

  30. Gordon MH (1990) Principles of gas chromatography. In: Gordon MH (ed) Principles and applications of gas chromatography in food analysis. Ellis Horwood, Chichester

    Chapter  Google Scholar 

  31. Matter L (2002) Application of the rules of chromatography to capillary gas chromatography. In: Matter L (ed) Food and environmental analysis by capillary gas chromatography. Wiley, Weinheim

    Google Scholar 

  32. Van Sant MJ (1997) Gas chromatography. In: Settle F (ed) Handbook of instrumental techniques for analytical chemistry. Prentice Hall PTR, Upper Saddle River, NJ

    Google Scholar 

  33. Engewald W, Dettmer-Wilde K (2014) Selection of capillary columns and operating conditions. In: Dettmer-Wilde K, Engewald W (eds) Practical gas chromatography: a comprehensive reference. Springer, Berlin, pp 117–160

    Chapter  Google Scholar 

  34. Dawling S, Jickells S, Negrusz A (2008) Gas chromatography. In: Jickells S, Negrusz A (eds) Clarke’s analytical forensic toxicology. Pharmaceutical Press, London, pp 469–513

    Google Scholar 

  35. Kravić S (2010) Determination of trans fatty acids in foodstuffs by gas chromatography–mass spectrometry. PhD thesis, University of Novi Sad, Faculty of Technology Novi Sad

    Google Scholar 

  36. McMaster M (2008) GC/MS: a practical user’ s guide, 2nd edn. Wiley, Hoboken, NJ

    Book  Google Scholar 

  37. Kennedy J, Knill C (2003) Split and splitless injection for quantitative gas chromatography (concepts, processes, practical guidelines, sources of error), 4th edition. Carbohydr Polym 53(3):225–354. https://doi.org/10.1016/S0144-8617(02)00198-4

    Article  CAS  Google Scholar 

  38. Sparkman D, Penton Z, Kitson F (2011) Gas chromatography and mass spectrometry: a practical guide, 2nd edn. Academic Press, Elsevier, Amsterdam

    Google Scholar 

  39. Grob K (2001) Split and splitless injection for quantitative gas chromatography. Wiley, Weinberg

    Book  Google Scholar 

  40. McNair H, Miller J (2009) Basic gas chromatography, 2nd edn. Wiley, New York

    Book  Google Scholar 

  41. Hajslova J, Cajka T (2009) Gas chromatography in food analysis. In: Otles S (ed) Handbook of food analysis instruments. Taylor & Francis, Boca Raton, FL, pp 119–144

    Google Scholar 

  42. Snow NH (2020) Beat the heat: cold injections in gas chromatography. LCGC N Am 37(7):392–395

    Google Scholar 

  43. Engewald W, Teskeb J, Efera J (1999) Programmed temperature vaporiser-based injection in capillary gas chromatography: Review. J Chromatogr A 856:259–278

    Article  CAS  PubMed  Google Scholar 

  44. Yuwono M, Indrayanto G (2004) Gas chromatography system instrumentation. In: Cazes J (ed) Encyclopedia of chromatography. Marcel Dekker, New York

    Google Scholar 

  45. Engewald W, Dettmer-Wilde K, Rotzsche H (2014) Columns and stationary phases. In: Dettmer-Wilde K, Engewald W (eds) Practical gas chromatography: a comprehensive reference. Springer, Berlin, pp 59–116

    Chapter  Google Scholar 

  46. Rood D (2007) The troubleshooting and maintenance guide for gas chromatographers, fourth revised and updated edition. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  47. Rotzsche H (1991) Stationary phases in gas chromatography, vol 48. Elsevier, Amsterdam

    Book  Google Scholar 

  48. Acree WE (1998) Basic gas chromatography (by Harold M. McNair and James M. Miller). J Chem Educ 75(9):1094

    Article  CAS  Google Scholar 

  49. Seeley J, Seeley S (2013) Multidimensional gas chromatography: fundamental advances and new applications. Anal Chem 85:557–578

    Article  CAS  PubMed  Google Scholar 

  50. Adahchour M, Brinkman U (2014) Multidimensional and comprehensive two-dimensional gas chromatography. In: Dettmer-Wilde K, Engewald W (eds) Practical gas chromatography a comprehensive reference. Springer, Berlin, pp 461–502

    Chapter  Google Scholar 

  51. Marriott PJ, Chin ST, Maikhunthod B, Schmarr HG, Bieri S (2012) Multidimensional gas chromatography. Trends Anal Chem 34:1–21

    Article  CAS  Google Scholar 

  52. Amaral MSS, Nolvachai Y, Marriott PJ (2020) Comprehensive two-dimensional gas chromatography advances in technology and applications: biennial update. Anal Chem 92(1):85–104

    Article  CAS  PubMed  Google Scholar 

  53. Moeder M (2014) Gas chromatography-mass spectrometry. In: Dettmer-Wilde K, Engewald W (eds) Practical gas chromatography: a comprehensive reference. Springer, Berlin, pp 303–350

    Chapter  Google Scholar 

  54. Bruno T (2000) A review of hyphenated chromatographic instrumentation. Separ Purif Methods 29(1):63–89

    Article  CAS  Google Scholar 

  55. de Hoffmann E, Stroobant V (2007) Mass spectrometry, principles and applications, 3rd edn. Wiley, Hoboken, NJ

    Google Scholar 

  56. Downard K (2004) Mass spectrometry: a foundation course. The Royal Society of Chemistry, Cambridge. Retrieved from http://www.amazon.com/Mass-Spectrometry-A-Foundation-Course/dp/0854046097

    Google Scholar 

  57. Grob RL, Barry EF (2004) Modern practice of gas chromatography, 4th edn. Wiley, Hoboken, NJ

    Book  Google Scholar 

  58. Greaves J, Roboz J (2014) Mass spectrometry for the novice. Taylor & Francis, Boca Raton

    Google Scholar 

  59. Westman-Brinkmalm A, Brinkmalm G (2009) A mass spectrometer’s building blocks. In: Ekman R, Silberring J, Westman-Brinkmalm A, Kraj A (eds) Mass spectrometry—instrumentation, interpretation, and applications. Wiley, Hoboken, NJ

    Google Scholar 

  60. Kitson F, Larsen B, McEwen C (1996) Gas chromatography and mass spectrometry: a practical guide. Academic Press, San Diego, CA

    Google Scholar 

  61. Gross JH (2011) Mass spectrometry, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  62. Cajka T, Showalter MR, Riddellova K, Fiehn O (2016) Advances in mass spectrometry for food authenticity testing: an omics perspective. In: Downey G (ed) Advances in food authenticity testing. Woodhead, Elsevier, Cambridge, pp 171–200

    Chapter  Google Scholar 

  63. Cajka T, Hajslova J, Mastovska K (2009) Mass spectrometry and hyphenated instruments in food analysis. In: Otles S (ed) Handbook of food analysis instruments. Taylor & Francis, Boca Raton, FL, pp 197–228

    Google Scholar 

  64. Rodrigues C, Maia R, Lauteri M, Brugnoli E, Máguas C (2013) Stable isotope analysis. In: de la Guardia M, Gonzálvez A (eds) Food protected designation of origin methodologies and applications, comprehensive analytical chemistry, vol 60. Elsevier, Amsterdam, pp 77–99

    Chapter  Google Scholar 

  65. Cordero C, Liberto E, Sgorbini B, Rubiolo P, Bicchi C (2012) Gas chromatography. In: Piko Y (ed) Chemical analysis of food: techniques and applications. Elsevier, Oxford, pp 311–373

    Chapter  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the support from the Ministry of Education, Science and Technological Development of the Republic of Serbia (Program No. 451-03-68/2022-14/200134).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristian Pastor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pastor, K. et al. (2023). Gas Chromatography and Mass Spectrometry: The Technique. In: Pastor, K. (eds) Emerging Food Authentication Methodologies Using GC/MS. Springer, Cham. https://doi.org/10.1007/978-3-031-30288-6_1

Download citation

Publish with us

Policies and ethics

Navigation