Intelligent Fog-IoT Networks with 6G Endorsement: Foundations, Applications, Trends and Challenges

  • Chapter
  • First Online:
6G Enabled Fog Computing in IoT

Abstract

The prolonged 5G network deployment includes the Internet of Things (IoT) as a technological advancement toward the expansion of wireless communication. The Internet of Everything (IoE), a superset of IoT, acts as the proliferation that accelerated the outburst of data and sparked new disciplines. Nonetheless, the foundational and crucial elements of an IoE depend heavily upon the computing intelligence that could be implemented in the 6G wireless communication system. This study aims to demonstrate the 6G-enabled fog architecture as a rigorous integrated IoT solution designed to accommodate seamless network operations and management. Fog computing (FC) is a game-changing technology that has the potential to deliver data storage and computation capabilities to forthcoming 6G networks. In the 6G generation, fog computing will be essential to support gigantic IoT applications. In recent years, the amount of IoT-linked nodes and gadgets in our everyday lives has increased rapidly. Fog computing has evolved into a well-established framework for addressing a wide range of critical Quality of Service (QoS) criteria, including latency, response time, bandwidth constraints, flexibility, security, and privacy. In this manuscript, the research explored 6G networks with IoT and fog computing technology in depth. This article outlines fog-enabled intelligent IoT applications while emphasizing the IoT networking context. The main objective of this study is to embrace varying technologies to elucidate notions, including modern IoT applications that exploit fog in Beyond fifth-generation (B5G) and 6G networks. Thus, it addresses specific issues and challenges that IoT may stumble into and implies potential fog solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. How the world will change as computers spread into everyday objects. Accessed May 25, 2022. Available online: https://www.economist.com/leaders/2019/09/12/how-the-world-will-change-as-computers-spread-into-everyday-objects

  2. Pham, Q.-V., Fang, F., Ha, V. N., Le, M., Ding, Z., Le, L. B., & Hwang, W.-J. (2020). A survey of multi-access edge computing in 5G and beyond: Fundamentals, technology integration, and state-of-the-art. IEEE Access, 8, 116974–117017.

    Article  Google Scholar 

  3. Basel, B., Ahmad, T., Samson, R., Steponenaite, A., Ansari, S., Langdon, P. M., Wassel, I. J., Abbasi, Q. H., Imran, M. A., & Keates, S. (2021). 6G opportunities arising from internet of things use cases: A review paper. Future Internet, 13(6), 159.

    Article  Google Scholar 

  4. Chiang, M., & Zhang, T. (2016). Fog and IoT: An overview of research opportunities. IEEE Internet of Things Journals, 3(6), 854–864.

    Article  Google Scholar 

  5. Ahmad, A., Abdullah, S., Iftikhar, S., Ahamd, I., Ajmal, S., & Hussain, Q. (2022). A novel blockchain based secured and QoS aware IoT vehicular network in edge cloud computing. IEEE Access, 10, 77707–77722.

    Article  Google Scholar 

  6. Lin, C., Han, G., Qi, X., Guizani, M., & Shu, L. (2020). A distributed mobile fog computing scheme for mobile delay-sensitive applications in SDN-enabled vehicular networks. IEEE Transactions on Vehicular Technology, 69(5), 5481–5493.

    Google Scholar 

  7. Mukherjee, M., Kumar, S., Mavromoustakis, C. X., Mastorakis, G., Matam, R., Kumar, V., & Zhang, Q. (2019). Latency-driven parallel task data offloading in fog computing networks for industrial applications. IEEE Transactions on Industrial Informatics, 16(9), 6050–6058.

    Article  Google Scholar 

  8. Luo, S., Chen, X., Zhou, Z., Chen, X., & Wu, W. (2020). Incentive-aware micro computing cluster formation for cooperative fog computing. IEEE Transactions on Wireless Communications, 19(4), 2643–2657.

    Article  Google Scholar 

  9. Tange, K., Michele, De. D., Fafoutis, X., & Dragoni, N. (2020). A systematic survey of industrial internet of things security: Requirements and fog computing opportunities. IEEE Communications Surveys & Tutorials, 22(4), 2489–2520.

    Article  Google Scholar 

  10. Adhikari, M., Mukherjee, M., & Srirama, S. N. (2019). DPTO: A deadline and priority-aware task offloading in fog computing framework leveraging multilevel feedback queueing. IEEE Internet of Things Journal, 7(7), 5773–5782.

    Google Scholar 

  11. Aazam, M., Zeadally, S., & Harras, K. A. (2018). Deploying fog computing in industrial internet of things and industry 4.0. IEEE Transactions on Industrial Informatics, 14(10), 4674–4682.

    Article  Google Scholar 

  12. Ansar, S. A., Arya, S., Aggrawal, S., Yadav, J., & Pathak, P. C. (2022). Bitcoin-blockchain technology: Security perspective. In 2022 3rd International Conference on Intelligent Engineering and Management (ICIEM). IEEE.

    Google Scholar 

  13. Ali, S., Sohail, M., Shah, S. B. H., Koundal, D., Hassan, M. A., Abdollahi, A., & Khan, I. U. (2021). New trends and advancement in next generation mobile wireless communication (6G): A survey. Wireless Communications and Mobile Computing, 2021, 14 pp.

    Google Scholar 

  14. Sodhro, G. H., Zahid, N., & Rawat, A. (2019). A novel energy optimization approach for artificial intelligence-enabled massive internet of things. In 2019 International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS). IEEE.

    Google Scholar 

  15. Stutek, M., Zeman, K., Masek, P., Sedova, J., & Hosek, J. (2019). IoT protocols for low-power massive IoT: A communication perspective. In 2019 11th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT). IEEE.

    Google Scholar 

  16. Lee, G., & Youn, J. (2020). Group-based transmission scheduling scheme for building LoRa-based massive IoT. In 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). IEEE.

    Google Scholar 

  17. Zeadally, S., Javed, M. A., & Hamida, E. B. (2020). Vehicular communications for its: Standardization and challenges. IEEE Communications Standards Magazine, 4(1), 11–17.

    Article  Google Scholar 

  18. Jameel, F., Javed, M. A., & Ngo, D. T. (2019). Performance analysis of cooperative v2v and v2i communications under correlated fading. IEEE Transactions on Intelligent Transportation Systems, 21(8), 3476–3484.

    Article  Google Scholar 

  19. Javed, M. A., & Zeadally, S. (2018). Repguide: Reputation-based route guidance using internet of vehicles. IEEE Communications Standards Magazine, 2(4), 81–87.

    Article  Google Scholar 

  20. Giordani, M., Polese, M., Mezzavilla, M., Rangan, S., & Zorzi, M. (2020). Toward 6g networks: Use cases and technologies. IEEE Communications Magazine, 58(3), 55–61.

    Article  Google Scholar 

  21. Saad, W., Bennis, M., & Chen, M. (2019). A vision of 6g wireless systems: Applications, trends, technologies, and open research problems. IEEE Network, 34(3), 134–142.

    Article  Google Scholar 

  22. Mao, B., Kawamoto, Y., & Kato, N. (2020). AI-based joint optimization of QoS and security for 6g energy harvesting Internet of Things. IEEE Internet of Things Journal, 7(8), 7032–7042.

    Article  Google Scholar 

  23. Sodhro, A. H., Sodhro, G. H., Guizani, M., Pirbhulal, S., & Boukerche, A. (2020). AI-enabled reliable channel modeling architecture for fog computing vehicular networks. IEEE Wireless Communications, 27(2), 14–21.

    Article  Google Scholar 

  24. Luong, N. C., Jiao, Y., Wang, P., Niyato, D., Kim, D. I., & Han, Z. (2020). A machine-learning-based auction for resource trading in fog computing. IEEE Communications Magazine, 58(3), 82–88.

    Article  Google Scholar 

  25. Lin, C., Han, G., Qi, X., Guizani, M., & Shu, L. (2020). A distributed mobile fog computing scheme for mobile delay-sensitive applications in SDN-enabled vehicular networks. IEEE Transactions on Vehicular Technology, 69(5), 5481–5493.

    Article  Google Scholar 

  26. Rahim, M., Javed, M. A., Alvi, A. N., & Imran, M. (2020). An efficient caching policy for content retrieval in autonomous connected vehicles. Transportation Research Part A: Policy and Practice, 140, 142–152.

    Google Scholar 

  27. Javed, M. A., Nafi, N. S., Basheer, S., Bivi, M. A., & Bashir, A. K. (2019). Fog-assisted cooperative protocol for traffic message transmission in vehicular networks. IEEE Access, 7, 166148–166156.

    Article  Google Scholar 

  28. Chakraborty, A., Kumar, M., Chaurasia, N., & Gill, S. S. (2022). Journey from cloud of things to fog of things: Survey, new trends, and research directions. Software: Practice and Experience, 53, 496–551.

    Google Scholar 

  29. Singh, J., Singh, P., & Gill, S. S. (2021). Fog computing: A taxonomy, systematic review, current trends and research challenges. Journal of Parallel and Distributed Computing, 157, 56–85.

    Article  Google Scholar 

  30. Soldani, D. (2020). On Australia’s Cyber and Critical Technology International Engagement Strategy towards 6G – How Australia may become a leader in Cyberspace. Journal of Telecommunications and the Digital Economy, 8(4), 127–158.

    Article  Google Scholar 

  31. Stergiou, C. L., Psannis, K. E., & Gupta, B. B. (2020). IoT-based big data secure management in the fog over a 6G wireless network. IEEE Internet of Things Journal, 8(7), 5164–5171.

    Article  Google Scholar 

  32. Hazra, A., Adhikari, M., Amgoth, T., & Srirama, S. N. (2020). Stackelberg game for service deployment of IoT-enabled applications in 6G-aware fog networks. IEEE Internet of Things Journals, 8(7), 5185–5193.

    Article  Google Scholar 

  33. Malik, U. M., Javed, M. A., Zeadally, S., & Ul Islam, S. (2021). Energy efficient fog computing for 6G enabled massive IoT: Recent trends and future opportunities. IEEE Internet of Things Journal, 9, 14572–14594.

    Article  Google Scholar 

  34. Ji, B., Wang, Y., Song, K., Li, C., Wen, H., Menon, & V. G., Mumtaz, S. (2021). A survey of computational intelligence for 6G: Key technologies, applications and trends. IEEE Transactions on Industrial Informatics, 17(10), 7145–7154.

    Google Scholar 

  35. Laghari, A. A., Wu, K., Laghari, R. A., Ali, M., & Khan, A. A. (2021). A review and state of art of Internet of Things (IoT). Archives of Computational Methods in Engineering, 1–19.

    Google Scholar 

  36. 6G Gains momentum with initiatives launched across the world. Accessed in 2022. Available online: https://www.6gworld.com/exclusives/6g-gains-momentum-with-initiatives-launched-across-the-world

  37. 5G, 5.5G and 6G fundamentals. Accessed in 2021. Available Online: https://youtu.be/2jfgIScLDgw

  38. Dey, S., & Mukherjee, A. (2016). Robotic SLAM. In Proceedings of the 13th International Conference on Mobile and Ubiquitous Systems: Computing Networking and Services (MOBIQUITOUS)

    Google Scholar 

  39. Strinati, E. C., & Barbarossa, S. (2021). Beyond Shannon towards semantic and goal-oriented communications. Computer Networks, 190, 107930.

    Article  Google Scholar 

  40. Ansar, S. A., & Khan, R. A. (2018). Networking communication and data knowledge engineering (pp. 15–25). Singapore: Springer.

    Book  Google Scholar 

  41. Security considerations for the 5G era. Accessed in 2020. Available Online: https://www.5gamericas.org/wpcontent/uploads/2020/07/Security-Considerations-for-the-5G-Era-2020-WP-Lossless.pdf

  42. Stutek, M., Zeman, K., Masek, P., Sedova, J., & Hosek, J. (2019). Iot protocols for low-power massive iot: A communication perspective. In 2019 11th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops(ICUMT). IEEE.

    Google Scholar 

  43. Al-Jarrah, M. A., Yaseen, M. A., Al-Dweik, A., Dobre, O. A., & Alsusa, E. (2019). Decision fusion for IoT-based wireless sensor networks. IEEE Internet of Things Journal, 7(2), 1313–1326.

    Article  Google Scholar 

  44. Mobile Communications Beyond 2020 – The Evolution of 5G Towards Next G. Available online: https://www.5gamericas.org/wp-content/uploads/2020/12/Future-Networks-2020-InDesign-PDF.pdf

  45. Dabbaghjamanesh, M., Moeini, A., Kavousi-Fard, A., & Jolfaei, A. (2020). Real-time monitoring and operation of microgrid using distributed cloud–fog architecture. Journal of Parallel and Distributed Computing, 146, 15–24.

    Article  Google Scholar 

  46. Gill, S. S., Tuli, S., Xu, M., Singh, I., Singh, K. V., Lindsay, D., Smirnova, D., Singh, M, & Jain, U. (2019). Transformative effects of IoT, blockchain and artificial intelligence on cloud computing: Evolution, vision, trends and open challenges. IEEE Internet of Things Journal, 8, 100118.

    Article  Google Scholar 

  47. Tuli, S., Basumatary, N., Gill, S. S., Kahani, M., Arya, R. C., Wander, G. S., & Buyya, R. (2020). Healthfog: An ensemble deep learning based smart healthcare system for automatic diagnosis of heart diseases in integrated IoT and fog computing environments. Future Generations Computer Systems, 104, 187–200.

    Article  Google Scholar 

  48. Amin, R., Kunal, S., Saha, A., Das, D., & Alamri, A. (2020). CFSec: Password based secure communication protocol in cloud-fog environment. Journal of Parallel and Distributed Computing, 140, 52–62.

    Article  Google Scholar 

  49. Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012). Fog computing and its role in the Internet of things. In MCC’12 - Proceedings of the 1st ACM Mobile Cloud Computing Workshop, August, 2012.

    Google Scholar 

  50. Internet of Things 2016. Available online: https://www.cisco.com/c/dam/en/us/products/collateral/se/internetof-things/at-a-glance-c45731471.pdf

  51. 5G IoT Market by Connection, Radio Technology, Range, Vertical and Region - Global Forecast to 2025. Available online: https://www.globenewswire.com/fr/news-release/2019/04/19/1806975/0/en/Global-5G-IoT-Market-Forecast-to-2025-Market

  52. Balghusoon, A. O., & Saoucene, M. (2020). Routing protocols for wireless nanosensor networks and Internet of nano things: A comprehensive survey. IEEE Access, 8, 200724–200748.

    Article  Google Scholar 

  53. Palattella, M. R., Dohler, M., Grieco, A., Rizzo, G., Torsner, J., Engel, T., & Ladid, L. (2016). Internet of things in the 5G era: Enablers, architecture, and business models. IEEE Journal on Selected Areas in Communications, 34(3), 510–527.

    Article  Google Scholar 

  54. Sodhro, A. H., Obaidat, M.S., Pirbhulal, S., Sodhro, G. H., Zahid, N., & Rawat, A. (2019). A novel energy optimization approach for artificial intelligence-enabled massive internet of things. In 2019 International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS). IEEE.

    Google Scholar 

  55. Qi, Q., Chen, X., & Ng, D. W. K. (2019). Robust beamforming for NOMA-based cellular massive IoT with SWIPT. IEEE Transactions on Signal Processing, 68, 211–224.

    Article  MathSciNet  MATH  Google Scholar 

  56. Iftikhar, S., et al. (2023). AI-based fog and edge computing: A systematic review, taxonomy and future directions. Internet of Things, 21, 100674.

    Article  Google Scholar 

  57. Gill, S. S., et al. (2022). AI for next generation computing: Emerging trends and future directions. Internet of Things, 19, 100514.

    Article  Google Scholar 

  58. Yang, Y., Luo, X., Chu, X., & Zhou, M. T. (2020). Fog-enabled intelligent IoT systems (pp. 39–60). New York: Springer International Publishing.

    Book  Google Scholar 

  59. Bonomi, F., Milito, R., Natarajan, P., & Zhu, J. (2014). Fog computing: A platform for internet of things and analytics. In Big data and internet of things: A roadmap for smart environments (pp. 169–186). Cham: Springer.

    Chapter  Google Scholar 

  60. Chiang, M., & Zhang, T. (2016). Fog and IoT: An overview of research opportunities. IEEE Internet of Things Journal, 3(6), 854–864.

    Article  Google Scholar 

  61. What Is It & How To Achieve A Human-Centered Society – IntelligentHQ. Accessed May 25, 2020. Available online https://www.intelligenthq.com/society-5-0-achieve-human-centered-society

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ansar, S.A., Samriya, J.K., Kumar, M., Gill, S.S., Khan, R.A. (2023). Intelligent Fog-IoT Networks with 6G Endorsement: Foundations, Applications, Trends and Challenges. In: Kumar, M., Gill, S.S., Samriya, J.K., Uhlig, S. (eds) 6G Enabled Fog Computing in IoT. Springer, Cham. https://doi.org/10.1007/978-3-031-30101-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30101-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30100-1

  • Online ISBN: 978-3-031-30101-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation