NIPG Method on Shishkin Mesh for Singularly Perturbed Convection-Diffusion Problem with Discontinuous Convection Coefficient

  • Conference paper
  • First Online:
Advances in Mathematical Modelling, Applied Analysis and Computation (ICMMAAC 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 666))

  • 256 Accesses

Abstract

In this paper, we investigate the convergence of discontinuous Galerkin finite element method (DGFEM) for singularly perturbed convection-diffusion problem with discontinuous convection coefficient. Due to the discontinuity in the convection coefficient, the problem typically shows a weak interior layer. We develop a kind of DGFEM, the non-symmetric discontinuous Galerkin finite element method with interior penalties (NIPG) to handle the layer setbacks. With the use of a typical Shishkin mesh, the domain is discretized and uniform error estimate is obtained and theoretically we have obtained the convergence of order \(\mathcal {O}(N^{-1} \ln N)\). The numerical outcome backs up our theoretical conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Babu, A.R., Ramanujam, N.: The SDFEM for singularly perturbed convection-diffusion problems with discontinuous source term arising in the chemical reactor theory. Int. J. Comput. Math. 88(8), 1664–1680 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brenner, S.C., Scott, L.R., Scott, L.R.: The mathematical theory of finite element methods, vol. 3, pp. 263–291. Springer, New York (2008). https://doi.org/10.1007/978-1-4757-4338-8

  3. Cen, Z.: A hybrid difference scheme for a singularly perturbed convection-diffusion problem with discontinuous convection coefficient. Appl. Math. Comput. 169(1), 689–699 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dubey, V.P., Kumar, D., Dubey, S.: A modified computational scheme and convergence analysis for fractional order hepatitis E virus model. In: Advanced Numerical Methods for Differential Equations, pp. 279–312. CRC Press (2021)

    Google Scholar 

  5. Dubey, V.P., Singh, J., Alshehri, A.M., Dubey, S., Kumar, D.: Forecasting the behavior of fractional order Bloch equations appearing in NMR flow via a hybrid computational technique. Chaos Solit. Fractals 164, 112691 (2022)

    Article  MathSciNet  Google Scholar 

  6. Dubey, V.P., Singh, J., Alshehri, A.M., Dubey, S., Kumar, D.: Numerical investigation of fractional model of Phytoplankton-toxic Phytoplankton-Zooplankton system with convergence analysis. Int. J. Biomath. 15(04), 2250006 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  7. Farrell, P.A., Hegarty, A.F., Miller, J.J., O’Riordan, E., Shishkin, G.I.: Global maximum norm parameter-uniform numerical method for a singularly perturbed convection-diffusion problem with discontinuous convection coefficient. Math. Comput. Model. 40(11–12), 1375–1392 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Farrell, P.A., Miller, J.J.H., Shishkin, G.I.: Singularly perturbed differential equations with. In: Analytical and Numerical Methods for Convection-Dominated and Singularly Perturbed Problems, p. 23 (2000)

    Google Scholar 

  9. Peng, Z., Ziqing, X., Shuzi, Z.: A coupled continuous-discontinuous fem approach for convection diffusion equations. Acta Math. Sci. 31(2), 601–612 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ranjan, K.R., Gowrisankar, S.: Uniformly convergent NIPG method for singularly perturbed convection diffusion problem on Shishkin type meshes. Appl. Numer. Math. 179(4), 125–148 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ranjan, K.R., Gowrisankar, S.: NIPG method on Shishkin mesh for singularly perturbed convection–diffusion problem with discontinuous source term. Int. J. Comput. Methods 2250048 (2022)

    Google Scholar 

  12. Roos, H.G., Zarin, H.: The streamline-diffusion method for a convection-diffusion problem with a point source. J. Comput. Appl. Math. 150(1), 109–128 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Singh, G., Natesan, S.: Study of the NIPG method for two–parameter singular perturbation problems on several layer adapted grids. J. Appl. Math. Comput. 63(1), 683–705 (2020). https://doi.org/10.1007/s12190-020-01334-7

    Article  MathSciNet  MATH  Google Scholar 

  14. Singh, H.: Chebyshev spectral method for solving a class of local and nonlocal elliptic boundary value problems. Int. J. Nonlinear Sci. Numer. Simul. (2021)

    Google Scholar 

  15. Singh, H., Singh, A.K., Pandey, R.K., Kumar, D., Singh, J.: An efficient computational approach for fractional Bratu’s equation arising in electrospinning process. Math. Methods Appl. Sci. 44(13), 10225–10238 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Singh, H., Srivastava, H.M., Kumar, D.: A reliable algorithm for the approximate solution of the nonlinear Lane-Emden type equations arising in astrophysics. Numer. Methods Partial Differ. Equ. 34(5), 1524–1555 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Teofanov, L., Brdar, M., Franz, S., Zarin, H.: SDFEM for an elliptic singularly perturbed problem with two parameters. Calcolo 55(4), 1–20 (2018). https://doi.org/10.1007/s10092-018-0293-0

    Article  MathSciNet  MATH  Google Scholar 

  18. Tobiska, L.: Analysis of a new stabilized higher order finite element method for advection-diffusion equations. Comput. Methods Appl. Mech. Eng. 196(1), 538–550 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zarin, H., Gordic, S.: Numerical solving of singularly perturbed boundary value problems with discontinuities. Novi Sad J. Math. 42, 01 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Zhang, J., Ma, X., Lv, Y.: Finite element method on Shishkin mesh for a singularly perturbed problem with an interior layer. Appl. Math. Lett. 121, 107509 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhu, P., Yang, Y., Yin, Y.: Higher order uniformly convergent NIPG methods for 1-d singularly perturbed problems of convection-diffusion type. Appl. Math. Model. 39(22), 6806–6816 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gowrisankar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ranjan, K.R., Gowrisankar, S. (2023). NIPG Method on Shishkin Mesh for Singularly Perturbed Convection-Diffusion Problem with Discontinuous Convection Coefficient. In: Singh, J., Anastassiou, G.A., Baleanu, D., Kumar, D. (eds) Advances in Mathematical Modelling, Applied Analysis and Computation . ICMMAAC 2022. Lecture Notes in Networks and Systems, vol 666. Springer, Cham. https://doi.org/10.1007/978-3-031-29959-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29959-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29958-2

  • Online ISBN: 978-3-031-29959-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation