Mitigation and Adaptation for Climate Change: The Role of BioCities and Nature-Based Solutions

  • Chapter
  • First Online:
Transforming Biocities

Abstract

In this chapter, we analyse the current state of the art on how green infrastructures mitigate and adapt to climate changes and pollution, how they may improve urban air quality, increase green mobility, and can promote other important ecosystem benefits as water cycle regulation and supply. Relevant case studies will be also described, as gaps and future perspectives will be analyzed towards reaching the full potential of urban forests and other green spaces, for Biocities in Europe and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andenæs E, Time B, Muthanna T, Asphaug S, Kvande T (2021) Risk reduction framework for blue-green roofs. Buildings 11:185. https://doi.org/10.3390/buildings11050185

    Article  Google Scholar 

  • Aram F, Higueras García E, Solgi E, Mansournia S (2019) Urban green space cooling effect in cities. Heliyon 5(4):01339

    Article  Google Scholar 

  • Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and matter, and the urban heat Island. Int J Climatol 23:1–26

    Article  Google Scholar 

  • ASLA (2022) Climate change mitigation: cities. The American Society of Landscape Architects. www.asla.org/mitigationurban.aspx

  • Banister D (2011) Cities, mobility and climate change. Concepts and policy framework

    Google Scholar 

  • Baró F, Chaparro L, Gomez-Baggethun E, Langemeyer J, David J, Terradas J (2014) Contribution of ecosystem services to air quality and climate change mitigation policies: the case of urban forests in Barcelona, Spain. AMBIO 43:466–479

    Article  PubMed  PubMed Central  Google Scholar 

  • Barwise Y, Kumar P (2020) Designing vegetation barriers for urban air pollution abatement: a practical review for appropriate plant species selection. Clim Atmos Sci 3:1–19

    Google Scholar 

  • Berland A, Shiflett SA, Shuster WD, Garmestani AS, Goddard HC, Herrmann DL, Hopton ME (2017) The role of trees in urban stormwater management. Landsc Urban Plan 162:167–177

    Article  PubMed  PubMed Central  Google Scholar 

  • Bottalico F, Travaglini D, Chirici G, Garfì V, Giannetti F, De Marco A, Fares S, Marchetti M, Nocentini S, Paoletti E, Salbitano F, Sanesi G (2017) A spatially-explicit method to assess the dry deposition of air pollution by urban forests in the city of Florence, Italy. Urban Forestry Urban Greening 27:221. https://doi.org/10.1016/j.ufug.2017.08.013

    Article  Google Scholar 

  • Brand C, Dons E, Anaya-Boig E, Avila-Palencia I, Clark A, de Nazelle A, Gascon M, Gaupp-Berghausen M, Gerike R, Götschi T, Iacorossi F, Kahlmeier S, Laeremans M, Nieuwenhuijsen MJ, Ojuela JP, Racioppi F, Raser E, Rojas-Rueda D, Standaert A, Stigell E, Sulikova S, Wegener S, Panis LI (2021) The climate change mitigation effects of daily active travel in cities. Transp Res D 93:102764

    Article  Google Scholar 

  • Campbell S, Remenyi TA, White CJ, Johnston FH (2018) Heatwave and health impact research: a global review. Health Place 53:210–218

    Article  PubMed  Google Scholar 

  • Cao S, Wang Y, Ni Z, **a B (2022) Effects of blue-green infrastructures on the microclimate in an urban residential area under hot weather. Front Sustain Cities 4:824779. https://doi.org/10.3389/frsc.2022.824779

    Article  Google Scholar 

  • Cepeliauskaite G, Keppner B, Simkute Z, Stasiskiene Z, Leuser L, Kalnina I, Kotovica N, Andin SJ, Muiste M (2021) Smart-mobility services for climate mitigation in urban areas: case studies of Baltic countries and Germany. Sustainability 13:4127

    Article  Google Scholar 

  • Clifton OE, Fiore AM, Massman WJ, Baublitz CB, Coyle M, Emberson L, Fares S, Farmer DK, Gentine P, Gerosa G, Guenther AB, Helmig D, Lombardozzi DL, Munger JW, Patton EG, Pusede SE, Schwede DB, Silva SJ, Sörgel M, Steiner AL, Tai APK (2020) Dry deposition of ozone over land: processes, measurement, and modeling. Rev Geophys 58:e2019RG000670

    Article  Google Scholar 

  • Coutts AM, White EC, Tapper NJ, Beringer J, Livesley SJ (2016) Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments. Theor Appl Climatol 124:55–68

    Article  Google Scholar 

  • Dall’Ara E, Maino E, Gatta G, Torreggiani D, Tassinari P (2019) Green mobility infrastructures: a landscape approach for roundabouts’ gardens applied to an Italian case study. Urban Forestry Urban Greening 37:109–125

    Article  Google Scholar 

  • Davies ZG, Edmondson JL, Heinemeyer A, Leake JR, Gaston KJ (2011) Map** an urban ecosystem service: quantifying above-ground carbon at a city-wide scale. J Appl Ecol 48:1125–1134. https://doi.org/10.1111/j.1365-2664.2011.02021.x

    Article  CAS  Google Scholar 

  • Dusart N, Gérard J, Le Thiec D, Collignon C, Jolivet Y, Vaultier MN (2019) Integrated analysis of the detoxification responses of two Euramerican poplar genotypes exposed to ozone and water deficit: focus on the ascorbate-glutathione cycle. Sci Total Environ 651:2365–2379

    Article  CAS  PubMed  Google Scholar 

  • EEA (2019) The European environment—state and outlook 2020: Knowledge for transition to a sustainable Europe, pp 499

    Google Scholar 

  • EEA (2021) Air quality in Europe 2021 report. European Environmental Agency, Copenhagen

    Google Scholar 

  • Fares S, Scarascia-Mugnozza G, Corona P, Palahí M (2015) Five steps for managing Europe’s forests. Nature 519:407–409

    Article  CAS  PubMed  Google Scholar 

  • Fares S, Savi F, Fusaro L, Conte A, Salvatori E, Aromolo R, Manes F (2016) Particle deposition in a peri-urban Mediterranean forest. Environ Pollut 1278–1286. https://doi.org/10.1016/j.envpol.2016.08.086

  • Fares S, Alivernini A, Conte A, Maggi F (2019) Ozone and particle fluxes in a Mediterranean forest predicted by the AIRTREE model. Sci Total Environ 682:494–504. https://doi.org/10.1016/j.scitotenv.2019.05.109

    Article  CAS  PubMed  Google Scholar 

  • Fares S, Conte A, Alivernini A, Chianucci F, Grotti M, Zappitelli I, Petrella F, Corona P (2020) Testing removal of carbon dioxide, ozone, and atmospheric particles by urban parks in Italy. Environ Sci Technol 54:14910–14922. https://doi.org/10.1021/acs.est.0c04740

    Article  CAS  PubMed  Google Scholar 

  • Favero A, Daigneault A, Sohngenet B (2020) Forests: carbon sequestration, biomass energy, or both? Sci Adv 6:eaay6792

    Article  PubMed  PubMed Central  Google Scholar 

  • Gamero-Salinas J, Monge-Barrio A, Kishnani N, López-Fidalgo J, Sánchez-Ostiz A (2021) Passive cooling design strategies as adaptation measures for lowering the indoor overheating risk in tropical climates. Energy Buildings 252:111417

    Article  Google Scholar 

  • García de Jalón S, Burgess PJ, Curiel Yuste J, Moreno G, Graves A, Palma JHN, Crous-Duran J, Kay S, Chiabai A (2019) Dry deposition of air pollutants on trees at regional scale: a case study in the Basque Country. Agric For Meteorol 278:107648

    Article  Google Scholar 

  • Georgiadis T (2019) Role of climate and city pattern (Chapter 3). In: Fabbri K (ed) Urban fuel poverty. Academic Press, pp 41–62

    Google Scholar 

  • Godbold DL, Hoosbeek MR, Lukac M, Cotrufo MF, Janssens IA, Ceulemans R, Polle A, Velthorst EJ, Scarascia-Mugnozza G, De Angelis P, Miglietta F, Peressotti A (2006) Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant Soil 281:15–24

    Article  CAS  Google Scholar 

  • Gratani L, Varone L (2005) Daily and seasonal variation of CO2 in the city of Rome in relationship with the traffic volume. Atmos Environ 39:2619–2624

    Article  CAS  Google Scholar 

  • Guillen-Cruz G, Rodríguez-Sanchez AL, Fernandez-Luqueño F, Flores-Rentería D (2021) Influence of vegetation type on the ecosystem services provided by urban green areas in an arid zone of northern Mexico. Urban Forestry Urban Greening 62:127135

    Article  Google Scholar 

  • Haase D, Hellwig R (2022) Effects of heat and drought stress on the health status of six urban street tree species in Leipzig, Germany. Trees, Forests People 8:100252

    Article  Google Scholar 

  • Han D, Shen H, Duan W, Chen L (2020) A review on particulate matter removal capacity by urban forests at different scales. Urban Forestry Urban Greening 48:126565

    Article  Google Scholar 

  • Hardy JP, Melloh R, Koenig G, Marks D, Winstral A, Pomeroy JW, Link T (2004) Solar radiation transmission through conifer canopies. Agric For Meteorol 126:257–270

    Article  Google Scholar 

  • Henninger S (2008) Analysis of near surface CO2 variability within the urban area of Essen, Germany. Meteorol Z 17:19–27

    Article  Google Scholar 

  • Hirons M, Beauchamp E, Whitfield S, Conway D, Asare R, Malhi Y (2020) Resilience to climate shocks in the tropics. Environ Res Lett 15:100203

    Article  Google Scholar 

  • IEA (2018) The future of cooling: opportunities for energy-efficient air conditioning, pp 98. moien.lu/wp-content/uploads/2018/08/The_Future_of_Cooling.pdf. Accessed 5 Mar 2021

    Google Scholar 

  • Jim CY, Chen WY (2009) Ecosystem services and valuation of urban forests in China. Cities 26:187–194

    Article  Google Scholar 

  • Kuang W, Liu A, Dou Y, Li G, Lu D (2019) Examining the impacts of urbanisation on surface radiation using Landsat imagery. GIScience Remote Sensing 56(3):462–484. https://doi.org/10.1080/15481603.2018.1508931

    Article  Google Scholar 

  • Leal Filho W, Echevarria Icaza L, Neht A, Klavins M, Morgan EA (2018) Co** with the impacts of urban heat islands: a literature based study on understanding urban heat vulnerability and the need for resilience in cities in a global climate change context. J Clean Prod 171:1140e1149

    Article  Google Scholar 

  • Leskinen P, Cardellini G, González-García S, Hurmekoski E, Sathre R, Seppälä J, Smyth C, Stern T, Verkerk PJ (2018) Substitution effects of wood-based products in climate change mitigation. From Science to Policy 7. European Forest Institute. https://doi.org/10.36333/fs07

  • Liberloo M, Lukac M, Calfapietra C, Hoosbeek MR, Gielen B, Miglietta F, Scarascia-Mugnozza GE, Ceulemans R (2009) Coppicing shifts CO2 stimulation of poplar productivity to above-ground pools: a synthesis of leaf to stand level results from the POP/EUROFACE experiment. New Phytol 182:331–346. https://doi.org/10.1111/j.1469-8137.2008.02754.x

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Li X (2012) Carbon storage and sequestration by urban forests in Shenyang, China. Urban Forestry Urban Greening 11:121–128. https://doi.org/10.1016/j.ufug.2011.03.002

    Article  Google Scholar 

  • Liu M, Zhang D, Pietzarka U, Roloff A (2021) Assessing the adaptability of urban tree species to climate change impacts: a case study in Shanghai. Urban Forestry Urban Greening 62:127186

    Article  Google Scholar 

  • Marchin RM, Esperon-Rodriguez M, Tjoelker MGG, Ellsworth DS (2022) Crown dieback and mortality of urban trees linked to heatwaves during extreme drought. Sci Total Environ 850:157915

    Article  CAS  PubMed  Google Scholar 

  • Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (eds) (2021) Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 33–144. https://doi.org/10.1017/9781009157896.002

  • McHale M, Pickett S, Barbosa O, Bunn DM, Cadenasso ML, Childers DL, Gartin M, Hess GR, Iwaniec DM, McPhearson T, Peterson MN, Poole AK, Rivers L, Shutters ST, Zhou W (2015) The new global urban realm: complex, connected, diffuse, and diverse social-ecological systems. Sustainability 7:5211–5240. https://doi.org/10.3390/su7055211

    Article  Google Scholar 

  • Morakinyo TE, Balogun AA, Adegun OB (2013) Comparing the effect of trees on thermal conditions of two typical urban buildings. Urban Clim 3:76–93

    Article  Google Scholar 

  • Nemitz E, Vieno M, Carnell E, Fitch A, Steadman C, Cryle P, Holland M, Morton RD, Hall J, Mills G, Hayes F, Dickie I, Carruthers D, Fowler D, Reis S, Jones L (2020) Potential and limitation of air pollution mitigation by vegetation and uncertainties of deposition-based evaluations: air pollution mitigation by vegetation. Philos Trans R Soc A Math Phys Eng Sci 378:20190320. https://doi.org/10.1098/rsta.2019.0320

    Article  CAS  Google Scholar 

  • Nouri H, Chavoshi Borujeni S, Hoekstra AY (2019) The blue water footprint of urban green spaces: an example for Adelaide, Australia. Landsc Urban Plann 190:103613

    Article  Google Scholar 

  • Nowak DJ, Crane DE (2002) Carbon storage and sequestration by urban trees in the USA. Environ Pollut 116:381–389

    Article  CAS  PubMed  Google Scholar 

  • Nowak DJ, Greenfield EJ, Hoehn RE, Lapoint E (2013) Carbon storage and sequestration by trees in urban and community areas of the United States. Environ Pollut 178:229–236. https://doi.org/10.1016/j.envpol.2013.03.019

    Article  CAS  PubMed  Google Scholar 

  • OECD (Organisation for economic co-operation and development) (2014) The cost of air pollution health impacts of road transport

    Google Scholar 

  • Pandit R, Laband DN (2010) Energy savings from tree shade. Ecol Econ 69:1324–1329

    Article  Google Scholar 

  • Park M, Joo SJ, Lee CS (2013) Effects of an urban park and residential area on the atmospheric CO2 concentration and flux in Seoul, Korea. Adv Atmos Sci 30:503–514

    Article  CAS  Google Scholar 

  • Phillips TH, Baker ME, Lautar K, Yesilonis I, Pavao-Zuckerman MA (2019) The capacity of urban forest patches to infiltrate stormwater is influenced by soil physical properties and soil moisture. J Environ Manag 246:11–18

    Article  Google Scholar 

  • Piao S, Sitch S, Ciais P, Friedlingstein P, Cong NAN, Huntingford C, Jung M (2013) Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Glob Chang Biol 19:1–16. https://doi.org/10.1111/gcb.12187

    Article  Google Scholar 

  • Piracha A, Chaudhary MT (2022) Urban air pollution, urban heat Island and human health: a review of the literature. Sustainability 14:9234. https://doi.org/10.3390/su14159234

    Article  CAS  Google Scholar 

  • Price O, Bradstock R (2014) Countervailing effects of urbanisation and vegetation extent on fire frequency on the wildland urban interface: disentangling fuel and ignition effects. Landsc Urban Plan 130:81–88

    Article  Google Scholar 

  • Purcell L (2021) Purdue landscape report: how do trees use water? Extension Forestry & Natural Resources, Purdue University. https://www.purdue.edu/fnr/extension/purdue-landscape-report-how-do-trees-use-water/

  • Raciti SM, Hutyra LR, Newell JD (2014) Map** carbon storage in urban trees with multisource remote sensing data: relationships between biomass, land use, and demographics in Boston neighborhoods. Sci Total Environ 500:72–83. https://doi.org/10.1016/j.scitotenv.2014.08.070

    Article  CAS  PubMed  Google Scholar 

  • Ramachandra TV, Aithal BH, Sreejith K (2015) GHG footprint of major cities in India. Renew Sust Energ Rev 44:473–495

    Article  Google Scholar 

  • Robine JM, Cheung SLK, Le Roy S, Van Oyen H, Griffiths C, Michel JP, Herrmann FR (2008) Death toll exceeded 70,000 in Europe during the summer of 2003. C R Biol 331:171–178

    Article  PubMed  Google Scholar 

  • Rötzer T, Moser-Reischl A, Rahman MA, Hartmann C, Paeth H, Pauleit S, Pretzsch H (2021) Urban tree growth and ecosystem services under extreme drought. Agric For Meteorol 308–309:108532

    Article  Google Scholar 

  • Saaroni H, Amorim JH, Hiemstra JA (2018) Urban green infrastructure as a tool for urban heat mitigation: survey of research methodologies and findings across different climatic regions. Urban Clim 24:94–110

    Article  Google Scholar 

  • Sæbø A, Popek R, Nawrot B, Hanslin HM, Gawronska H, Gawronski SW (2012) Plant species differences in particulate matter accumulation on leaf surfaces. Sci Total Environ 427–428:347–354

    Article  PubMed  Google Scholar 

  • Santamouris M, Cartalis C, Synnefa A, Kolokotsa D (2015) On the impact of urban heat Island and global warming on the power demand and electricity consumption of buildings—a review. Energ Buildings 98:119–124

    Article  Google Scholar 

  • Sathre R, O’Connor J (2010) Meta-analysis of greenhouse gas displacement factors of wood product substitution. Environ Sci Policy 13:104–114. https://doi.org/10.1016/j.envsci.2009.12.005

    Article  CAS  Google Scholar 

  • Scarascia-Mugnozza G, Matteucci G (2014) The impact of temperature and drought on the carbon balance of forest ecosystems: the case of a beech forest in Central Italy. Agrochimica 58:34–39

    Google Scholar 

  • Schraufnagel DE, Balmes JR, Cowl CT, De Matteis S, Jung SH, Mortimer K, Perez-Padilla R, Rice MB, Riojas-Rodriguez H, Sood A, Thurston GD, To T, Vanker A, Wuebbles DJ (2019) Air pollution and noncommunicable diseases: a review by the forum of international respiratory societies’ environmental committee, part 1: the damaging effects of air pollution. Chest 155:409–416

    Article  PubMed  Google Scholar 

  • Schütt A, Becker JN, Gröngröft A, Schaaf-Titel S, Eschenbach A (2022) Soil water stress at young urban street-tree sites in response to meteorology and site parameters. Urban Forestry Urban Greening 75:127692

    Article  Google Scholar 

  • Schwaab J, Meier R, Mussetti G, Seneviratne S, Bürgi C, Davin EL (2021) The role of urban trees in reducing land surface temperatures in European cities. Nat Commun 12:6763. https://doi.org/10.1038/s41467-021-26768-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott K, Simpson JR, McPherson EG (1999) Effects of tree cover on parking lot microclimate and vehicle emissions. J Arboric 25(3)

    Google Scholar 

  • Sethi M, Lamb W, Minx J, Creutzig F (2020) Climate change mitigation in cities: a systematic sco** of case studies. Environ Res Lett 15:093008

    Article  CAS  Google Scholar 

  • Shindell D, Zhang Y, Scott M, Ru M, Stark K, Ebi KL (2020) The effects of heat exposure on human mortality throughout the United States. GeoHealth 3. https://doi.org/10.1029/2019GH000234

  • Tang YJ, Chen AP, Zhao SQ (2016) Carbon storage and sequestration of urban street trees in Bei**g, China. Front Ecol Evol 4:53. https://doi.org/10.3389/fevo.2016.00053

    Article  Google Scholar 

  • Tiwari M, Sahu SK, Rathod T, Bhangare RC, Ajmal PY, Vinod Kumar A (2020) Measurement of size-fractionated atmospheric particulate matter and associated polycyclic aromatic hydrocarbons in Mumbai, India, and their dry deposition fluxes. Air Qual Atmos Health 13:939–949

    Article  CAS  Google Scholar 

  • Tsavachidis M, Le Petit Y (2022) Re-sha** urban mobility - key to Europe’s green transition. J Urban Mobility 2:100014

    Article  Google Scholar 

  • United Nations DESA (2022) Goal 11: sustainable cities and human settlements. sdgs.un.org/topics/sustainable-cities-and-human-settlements

  • USDA-Forest Service (2022) I-Tree Tools, Forest and Community Trees. www.itreetools.org/about

  • Wang Y (2016) The effect of urban green infrastructure on local microclimate and human thermal comfort. PhD thesis, Wageningen University, NL

    Google Scholar 

  • Wang C, Ren Z, Dong Y, Zhang P, Guo Y, Wang W, Bao G (2022) Efficient cooling of cities at global scale using urban green space to mitigate urban heat Island effects in different climatic regions. Urban Forestry Urban Greening 74:127635

    Article  Google Scholar 

  • WHO (2018) Climate Change and Health. World Health Organisation, Geneva. www.who.int/news-room/fact-sheets/detail/climate-change-and-health. Accessed 22 Feb 2020

  • WHO (2021) WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organisation, Geneva

    Google Scholar 

  • Wilkes P, Disney M, Boni Vicari M, Calders K, Burt A (2018) Estimating urban above ground biomass with multi-scale LiDAR. Carbon Balance Manag 13:10

    Article  PubMed  PubMed Central  Google Scholar 

  • **ng Y, Brimblecombe P (2020) Trees and parks as “the lungs of cities”. Urban Forestry Urban Greening 48:126552

    Article  Google Scholar 

  • Young DT, Clark P, Hendry M, Barlow J (2015) Modelling radiative exchange in a vegetated urban street canyon model. ICUC9 - 9th international conference on urban climate jointly with 12th symposium on the urban environment. www.meteo.fr/icuc9/LongAbstracts/nomtm1-7-5891008_a.pdf

  • Yu Z, Yang G, Zuo S, Jørgensen G, Koga M, Vejre H (2020) Critical review on the cooling effect of urban blue-green space: a threshold-size perspective. Urban Forestry Urban Greening 49:126630

    Article  Google Scholar 

  • Zhang B, Brack CL (2021) Urban forest responses to climate change: a case study in Canberra. Urban For Urban Green 57:126910

    Article  Google Scholar 

  • Zhao SQ, Zhu C, Zhou DC, Huang D, Werner J (2013) Organic carbon storage in China’s urban areas. PLoS One 8:e71975. https://doi.org/10.1371/journal.pone.0071975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zupancic T, Westmacott C, Bulthuis M (2015) The impact of green space on heat and air pollution in urban communities: a mete-narrative systematic review. davidsuzuki.org/wp-content/uploads/2017/09/impact-green-space-heat-air-pollution-urban-communities.pdf. Accessed 5 Mar 2021

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvano Fares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fares, S. et al. (2023). Mitigation and Adaptation for Climate Change: The Role of BioCities and Nature-Based Solutions. In: Scarascia-Mugnozza, G.E., Guallart, V., Salbitano, F., Ottaviani Aalmo, G., Boeri, S. (eds) Transforming Biocities. Future City, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-031-29466-2_5

Download citation

Publish with us

Policies and ethics

Navigation