Current Yield

  • Chapter
  • First Online:
Electrolytic Production of Al–Si Alloys

Abstract

The main reasons for the decrease in current efficiency in obtaining the Al–Si alloys are the same as in case of production of pure aluminum: 1) evaporation of the products of the interaction of aluminum and cryolite and 2) dissolution of aluminum in cryolite and its subsequent oxidation. These processes were studied in this chapter by the methods of thermogravimetry, vapor pressure measurements, mass-spectrometry and direct measurements of metal solubility in the melts. As follows from the results, when obtaining alloys, for example, with 3 mass% Si, the productivity of the electrolyzer should increase by 1.013 times, and with 5 mass%, by 1.034 times. Therefore, the decrease in productivity observed during early industrial tests of the method was caused solely by an increase in the process temperature due to the technology violations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grjotheim K, Krohn C, Malinovsky M, Matiasovsky K, Thonstad J (1977) Aluminium electrolysis. Aluminium-Verlag, Dusseldorf, 350 p

    Google Scholar 

  2. Grjotheim K, Krohn C, Malinovsky M, Matiasovsky K, Thonstad J (1982) Aluminium electrolysis, 2nd edn. Aluminium-Verlag, Dusseldorf, 442 p

    Google Scholar 

  3. Thonstad J, Fellner P, Haarberg GM, Hives J, Kvande H, Sterten A (2001) Aluminium electrolysis, 3rd edn. Aluminium-Verlag, Dusseldorf, 359 p

    Google Scholar 

  4. Stokes J, Frank W (1963) Extractive metallurgy of aluminium, vol 2, pp 8–14

    Google Scholar 

  5. Belyaev A, Firsanova L (1959) Odnovalentnyi aliuminiy v menallurgicheskikh protsessakh (Univalent aluminum in metallurgical processes). Metallurgizdat, Moscow, 143 p (in Russian)

    Google Scholar 

  6. Sidorov L, Korobov M, Zhuravleva L (1985) Mass-spektralnye termodinamicheskiye issledovaniya (Mass-spectral thermodynamic studies). MGU, Moscow, 208 p (in Russian)

    Google Scholar 

  7. Odegard R, Sterten A, Thonstad J (1987) TMS light metals 1987, pp 389–396

    Google Scholar 

  8. Vetiukov M, Tsyplakov A, Shkolnikov S (1987) Elektrometallurgiya aliuminiya i magniya (Electrometallurgy of aluminum and magnesium). Metallurgiya, Moscow, 320 p (in Russian)

    Google Scholar 

  9. Morachevskiy A, Avaliani A, Mindin V (1978) Zhidkiye katody (Liquid cathodes). Mzinereba, Tbilisi, 184 p (in Russian)

    Google Scholar 

  10. Morozov I, Rykov A, Korenev Yu, Pruttskov D (1990) Rasplavy (Melts) 4:111–114 (in Russian)

    Google Scholar 

  11. Morozov I, Pruttskov D, Rykov A, Korenev Yu (1991) Rasplavy (Melts) 5:69–71 (in Russian)

    Google Scholar 

  12. Pruttskov D, Titaev P, Andriiko A, Mozhaev V, Polyakov P (1991) Rasplavy (Melts) 5(5):69–73

    Google Scholar 

  13. Pruttskov D, Titaev P, Olesov Yu (1991) Rasplavy (Melts) 5:108–110 (in Russian)

    Google Scholar 

  14. Suvorov A (1970) Termodinamicheskaya khimiya paroobraznogo sostoyaniya (Thermodynamic chemistry of vapours). Khimiya, Leningrad, 208 p (in Russian)

    Google Scholar 

  15. Gurvich L, Karachentsev G, Kondratiev V, Lebedev Yu, Medvedev V, Potapov V, Khodeev Yu (1974) Energii razryva khimicheskikh svyazei. Potentsialy ionizaysi i isrodstvo k elektrony (The energy of breaking chemical bonds. Ionization potentials and electron affinity). Nauka, Moscow, 351 p (in Russian)

    Google Scholar 

  16. Nikitin M, Sidorov L (1980) Int J Mass Spectrom Ion Phys 35:101–106

    Article  CAS  Google Scholar 

  17. Stull D, Prophet H (1971) JANAF thermochemical tables, 2nd edn. U.S. Department of Commerce, National Bureau of Standards, 1141 p

    Google Scholar 

  18. Sterten A, Hamberg К, Maeland I (1982) Acta Chem Scand A 36:329–344

    Google Scholar 

  19. Stroganov G, Rotenberg B, Gershman G (1977) Splavy aliuminiya s kremniyem (Alloys of aluminum with silicon). Metallurgiya, Moscow, 271 p (in Russian)

    Google Scholar 

  20. Nekrasov B (1973) Osnovy obshchei khimii (Basics of general chemistry). Khimiya v.I., Moscow, 656 p (in Russian)

    Google Scholar 

  21. Rapoport F, Ilinskaya A (1963) Laboratornye metody polucheniya chistykh gazov (Laboratory methods for preparation of pure gases). Goskhimiszdat, Moscow, 420 p (in Russian)

    Google Scholar 

  22. Schaefer S (1974) Rept Invest Bur Mines US Dep Inter 7895:1–15

    Google Scholar 

  23. Smirnov M (1973) Elektrodnye potentsialy v pasplavlennykh khloridakh (Electrode potentials in molten chlorides). Nauka, Moscow, 248 p (in Russian)

    Google Scholar 

  24. Andriiko A, Andriiko Yu, Nauer G (2013) Many-electron electrochemical processes. Springer-Verlag, Berlin, 167 p

    Google Scholar 

  25. Frank-Kamenetskii D (2015) Diffusion and heat exchange in chemical kinetics. Princeton University Press, 384 p

    Google Scholar 

  26. Hannach R, Osborne J, Templeton G, Frazer E, Welch B (1977) Molten salts electrolysis in metal production. In: Proceedings of international symposium, Grenoble, pp 7–13

    Google Scholar 

  27. Tabereax A, McMinn C (1978) TMS light metals 1978, pp 209–222

    Google Scholar 

  28. Keller R, Welch B, Tabereaux A (1990) TMS light metals 1990, pp 333–340

    Google Scholar 

  29. Moxnes B, Gikling H, Kvande H, Rolseth S, Straumsheim K (2003) TMS light metals 2003, pp 329–334

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksander Andriiko .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pruttskov, D., Andriiko, A., Kirichenko, A. (2023). Current Yield. In: Electrolytic Production of Al–Si Alloys. Monographs in Electrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-29249-1_3

Download citation

Publish with us

Policies and ethics

Navigation