Toll-Like Receptors in Pain and Itch

  • Chapter
  • First Online:
Neuroimmune Interactions in Pain

Abstract

Pattern recognition receptors (PRR) are genetically encoded proteins which recognize a host of highly conserved “danger signals” produced by microbial organisms (pathogen-associated molecular patterns, or PAMPs) or released by damaged host cells (damage-associated molecular patterns, or DAMPs). PAMP or DAMP-mediated activation of PRR-bearing immune cells is a critical step in initiating an immune response. The Toll-like receptors (TLRs) are a small family of proteins with deep evolutionary origins; they are present in both invertebrate and vertebrate species and all TLR members share a common Toll-Interleukin-1 Receptor (TIR) domain. There is considerable variation in the number of TLRs present in different species with Drosophila (9), mice (12), and humans (10) each having a slightly different number which pales in comparison to the number present in purple sea urchins (222). In this chapter, we discuss the basic biology of the TLRs, including their activation, subcellular localization, and downstream signaling. We highlight the critical role that TLRs play in initiating innate and adaptive immune responses and emphasize a discussion of how TLR-mediated proinflammatory signaling is coupled to pain or itch through neuro–immune interactions. We also highlight emerging evidence that suggests TLR signaling in sensory neurons can rapidly modulate neuronal excitability and discuss the physiological consequences of non-canonical TLR signaling in neurons. Overall, this chapter reviews the plethora of evidence which now exists to support the many ways in which TLR signaling can regulate sensory function via neuro–immune interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AP1:

Activator Protein-1

BDNF:

Brain-Derived Neurotrophic Factor

CIPN:

Chemotherapy-Induced Peripheral Neuropathy

CLR:

C-type Lectin Receptor

CNS:

Central Nervous System

DAMP:

Damage-Associated Molecular Pattern

DRG:

Dorsal Root Ganglion

ET-1:

Endothelin-1

GPCR:

G Protein Coupled Receptor

hBD2:

Human Beta-Defensin-2

HMGB1:

High Mobility Group Box Protein 1

HSP:

Heat Shock Protein

IFM:

Inflammatory Mediator

IFN-I:

Type-I Interferon

IKK:

Inhibitor of Nuclear Factor-κB (IκB) Kinase

IL:

Interleukin

IL-1R:

Interleukin-1 Receptor-Associated Kinase (Biragyn et al. 2002)

ISG:

Interferon Stimulated Gene

LPS:

Lipopolysaccharide

LTP:

Long-Term Potentiation

MAPK:

Mitogen-Activated Protein Kinase

MyD88:

Myeloid Differentiation Primary Response 88

NF200:

Neurofilament 200

NF-κB:

Nuclear Factor-κB

NGF:

Nerve Growth Factor

NLR:

Nucleotide-Binding and Oligomerization Domain (NOD)-Like Receptor

PAMP:

Pathogen-Associated Molecular Pattern

PGE2:

Prostaglandin E2

pION:

Partial Infraorbital Nerve Ligation

PNS:

Peripheral Nervous System

Poly(I:C):

Polyinosinic-Polycytidylic Acid

PRR:

Pattern Recognition Receptor

PTX:

Paclitaxel

SDH:

Spinal Dorsal Horn

sEPSC:

Spontaneous Excitatory Postsynaptic Current

SGC:

Satellite Glial Cell

sIPSC:

Spontaneous Inhibitory Postsynaptic Current

SMOC:

Supramolecular Organizing Complex

TBK1:

Tank-Binding Kinase-1

TG:

Trigeminal Ganglion

TIR:

Toll-Interleukin-1 Receptor [Homology Domain]

TIRAP:

TIR Domain Containing Adaptor Protein

TLR:

Toll-Like receptor

TNF:

Tumor Necrosis Factor

TRAF:

TNF Receptor Associated Factor (Caterina et al. 2000)

TRIF:

TIR-Domain-Containing Adapter-Indued Interferon-Beta

TrkA:

Tropomyosin Receptor Kinase A

TRPA1:

Transient Receptor Potential Cation Channel Subfamily A Member 1

TRPM8:

Transient Receptor Potential Cation Channel Subfamily M Member 8

TRPV1:

Transient Receptor Potential Cation Channel Subfamily V Member 1

References

  • Ahn H, Kim JM, Lee K, Kim H, Jeong D. Extracellular acidosis accelerates bone resorption by enhancing osteoclast survival, adhesion, and migration. Biochem Biophys Res Commun. (1090–2104 (Electronic)). 2012;418:144–8.

    Article  CAS  PubMed  Google Scholar 

  • Akira S, Hoshino K. Myeloid differentiation factor 88—dependent and—independent pathways in toll-like receptor signaling. J Infect Dis. 2003;187(Supplement_2):S356–63.

    Article  CAS  PubMed  Google Scholar 

  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-κB by toll-like receptor 3. Nature. 2001;413(6857):732–8.

    Article  CAS  PubMed  Google Scholar 

  • Anderson KV, Bokla L, Nüsslein-Volhard C. Establishment of dorsal-ventral polarity in the drosophila embryo: the induction of polarity by the toll gene product. Cell. 1985a;42(3):791–8.

    Article  CAS  PubMed  Google Scholar 

  • Anderson KV, Jürgens G, Nüsslein-Volhard C. Establishment of dorsal-ventral polarity in the drosophila embryo: genetic studies on the role of the toll gene product. Cell. 1985b;42(3):779–89.

    Article  CAS  PubMed  Google Scholar 

  • Aravalli RN, Peterson PK, Lokensgard JR. Toll-like receptors in defense and damage of the central nervous system. J Neuroimmune Pharmacol. 2007;2(4):297–312.

    Article  PubMed  Google Scholar 

  • Augustin R, Schröder K, Murillo Rincón AP, Fraune S, Anton-Erxleben F, Herbst E-M, Wittlieb J, Schwentner M, Grötzinger J, Wassenaar TM, et al. A secreted antibacterial neuropeptide shapes the microbiome of hydra. Nat Commun. 2017;8(1):698.

    Article  PubMed  PubMed Central  Google Scholar 

  • Baeuerle PA, Henkel T. Function and activation of NF-kappa B in the immune system. Annu Rev Immunol. 1994;12(1):141–79.

    Article  CAS  PubMed  Google Scholar 

  • Barajon I, Serrao G, Arnaboldi F, Opizzi E, Ripamonti G, Balsari A, Rumio C. Toll-like receptors 3, 4, and 7 are expressed in the enteric nervous system and dorsal root ganglia. J Histochem Cytochem. 2009;57(11):1013–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barragán-Iglesias P, Franco-Enzástiga Ú, Jeevakumar V, Shiers S, Wangzhou A, Granados-Soto V, Campbell ZT, Dussor G, Price TJ. Type I interferons act directly on nociceptors to produce pain sensitization: implications for viral infection-induced pain. J Neurosci. 2020;40(18):3517–32.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bautista DM, Jordt S-E, Nikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN, Basbaum AI, Julius D. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell. 2006;124(6):1269–82.

    Article  CAS  PubMed  Google Scholar 

  • Belvin MP, Anderson KV. A conserved signaling pathway: the drosophila toll-dorsal pathway. Annu Rev Cell Dev Biol. 1996;12(1):393–416.

    Article  CAS  PubMed  Google Scholar 

  • Bettoni I, Comelli F, Rossini C, Granucci F, Giagnoni G, Peri F, Costa B. Glial TLR4 receptor as new target to treat neuropathic pain: efficacy of a new receptor antagonist in a model of peripheral nerve injury in mice. Glia. 2008;56(12):1312–9.

    Article  PubMed  Google Scholar 

  • Beutler B, Rietschel ET. Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol. 2003;3(2):169–76.

    Article  CAS  PubMed  Google Scholar 

  • Biragyn A, Ruffini PA, Leifer CA, Klyushnenkova E, Shakhov A, Chertov O, Shirakawa AK, Farber JM, Segal DM, Oppenheim JJ, et al. Toll-like receptor 4-dependent activation of dendritic cells by β-defensin 2. Science. 2002;298(5595):1025.

    Article  CAS  PubMed  Google Scholar 

  • Botos I, Segal DM, Davies DR. The structural biology of toll-like receptors. Structure. 2011;19(4):447–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruno K, Woller SA, Miller YI, Yaksh TL, Wallace M, Beaton G, Chakravarthy K. Targeting toll-like receptor-4 (TLR4)-an emerging therapeutic target for persistent pain states. Pain. 2018;159(10):1908–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bsibsi M, Ravid R, Gveric D, van Noort JM. Broad expression of toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol. 2002;61(11):1013–21.

    Article  CAS  PubMed  Google Scholar 

  • Burnet FM. A modification of Jerne’s theory of antibody production using the concept of clonal selection. CA Cancer J Clin. 1976;26(2):119–21.

    Article  CAS  PubMed  Google Scholar 

  • Campbell JN, Raja SN, Meyer RA, Mackinnon SE. Myelinated afferents signal the hyperalgesia associated with nerve injury. Pain. 1988;32(1):89–94.

    Article  PubMed  Google Scholar 

  • Cao X, Aballay A. Neural inhibition of dopaminergic signaling enhances immunity in a cell-non-autonomous manner. Curr Biol. 2016;26(17):2329–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpentier PA, Begolka WS, Olson JK, Elhofy A, Karpus WJ, Miller SD. Differential activation of astrocytes by innate and adaptive immune stimuli. Glia. 2005;49(3):360–74.

    Article  PubMed  Google Scholar 

  • Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science. 2000;288(5464):306.

    Article  CAS  PubMed  Google Scholar 

  • Chang C, Liu H-K, Yeh C-B, Yang M-L, Liao W-C, Liu C-H, Tseng T-J. Cross-talk of toll-like receptor 5 and mu-opioid receptor attenuates chronic constriction injury-induced mechanical hyperalgesia through a protein kinase C alpha-dependent signaling. Int J Mol Sci. 2021;22(4):1891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Lu Z. Upregulated TLR3 promotes neuropathic pain by regulating autophagy in rat with l5 spinal nerve ligation model. Neurochem Res. 2017;42(2):634–43.

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Zhang Y-Q, Qadri YJ, Serhan CN, Ji R-R. Microglia in pain: detrimental and protective roles in pathogenesis and resolution of pain. Neuron. 2018;100(6):1292–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen O, Donnelly CR, Ji R-R. Regulation of pain by neuro-immune interactions between macrophages and nociceptor sensory neurons. Curr Opin Neurobiol. 2020;62:17–25.

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Wang Z-L, Yeo M, Zhang Q-J, López-Romero AE, Ding H-P, Zhang X, Zeng Q, Morales-Lázaro SL, Moore C, et al. Epithelia-sensory neuron cross talk underlies cholestatic itch induced by lysophosphatidylcholine. Gastroenterology. 2021;161(1):301–17.e316.

    Article  CAS  PubMed  Google Scholar 

  • Chiu IM. Infection, pain, and itch. Neurosci Bull. 2018;34(1):109–19.

    Article  CAS  PubMed  Google Scholar 

  • Clark AK, Staniland AA, Marchand F, Kaan TKY, McMahon SB, Malcangio M. P2X7-dependent release of interleukin-1beta and nociception in the spinal cord following lipopolysaccharide. J Neurosci. 2010;30(2):573–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cristina Lebre M, Antons JC, Kalinski P, Schuitemaker JHN, van Capel TMM, Kapsenberg ML, de Jong EC. Double-stranded RNA-exposed human keratinocytes promote Th1 responses by inducing a type-1 polarized phenotype in dendritic cells: Role of keratinocyte-derived tumor necrosis factor α, type I interferons, and interleukin-18. J Investig Dermatol. 2003;120(6):990–7.

    Article  PubMed  Google Scholar 

  • Diebold Sandra S, Kaisho T, Hemmi H, Akira S, Reis e Sousa C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science. 2004;303(5663):1529–31.

    Article  CAS  PubMed  Google Scholar 

  • Diogenes A, Ferraz CC, Akopian AN, Henry MA, Hargreaves KM. LPS sensitizes TRPV1 via activation of TLR4 in trigeminal sensory neurons. J Dent Res. 2011;60:759–64. (1544-0591 (Electronic))

    Article  Google Scholar 

  • Dong X, Dong X. Peripheral and central mechanisms of itch. Neuron. 2018;98(3):482–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donnelly CR, Chen O, Ji RR. How do sensory neurons sense danger signals? Trends in Neuroscience. 2020;43(10):822–38. (1878-108X (Electronic))

    Article  CAS  Google Scholar 

  • Emmerich CH, Ordureau A, Strickson S, Arthur JSC, Pedrioli PGA, Komander D, Cohen P. Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains. Proc Natl Acad Sci U S A. 2013;110(38):15247–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Everts B, Amiel E, Huang SC-C, Smith AM, Chang C-H, Lam WY, Redmann V, Freitas TC, Blagih J, van der Windt GJW, et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKɛ supports the anabolic demands of dendritic cell activation. Nat Immunol. 2014;15(4):323–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ewald SE, Engel A, Lee J, Wang M, Bogyo M, Barton GM. Nucleic acid recognition by toll-like receptors is coupled to stepwise processing by cathepsins and asparagine endopeptidase. J Exp Med. 2011;208(4):643–51.

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Luo J, Mack MR, Yang P, Zhang F, Wang G, Gong X, Cai T, Mei Z, Kim BS, et al. The antimicrobial peptide human beta-defensin 2 promotes itch through toll-like receptor 4 signaling in mice. J Allergy Clin Immunol. 2017;140(3):885–8.e886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzgerald KA, Kagan JC. Toll-like receptors and the control of immunity. Cell. 2020;180(6):1044–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, Coyle AJ, Liao S-M, Maniatis T. IKKε and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol. 2003a;4(5):491–6.

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald KA, Rowe DC, Barnes BJ, Caffrey DR, Visintin A, Latz E, Monks B, Pitha PM, Golenbock DT. LPS-TLR4 signaling to IRF-3/7 and NF-κB involves the toll adapters TRAM and TRIF. J Exp Med. 2003b;198(7):1043–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraune S, Bosch TCG. Long-term maintenance of species-specific bacterial microbiota in the basal metazoan Hydra. Proc Natl Acad Sci. 2007;104(32):13146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukui R, Yamamoto C, Matsumoto F, Onji M, Shibata T, Murakami Y, Kanno A, Hayashi T, Tanimura N, Yoshida N, et al. Cleavage of toll-like receptor 9 ectodomain is required for in vivo responses to single strand DNA. Front Immunol. 2018;9:1491.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao W, **ong Y, Li Q, Yang H. Inhibition of toll-like receptor signaling as a promising therapy for inflammatory diseases: a journey from molecular to nano therapeutics. Front Physiol. 2017;8:508.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gay NJ, Keith FJ. Drosophila toll and IL-1 receptor. Nature. 1991;351(6325):355–6.

    Article  CAS  PubMed  Google Scholar 

  • Gay NJ, Symmons MF, Gangloff M, Bryant CE. Assembly and localization of toll-like receptor signalling complexes. Nat Rev Immunol. 2014;14(8):546–58.

    Article  CAS  PubMed  Google Scholar 

  • Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol. 2001;167(4):1882.

    Article  CAS  PubMed  Google Scholar 

  • Goethals S, Ydens E, Timmerman V, Janssens S. Toll-like receptor expression in the peripheral nerve. Glia. 2010;58(14):1701–9. (1098-1136 (Electronic))

    Article  PubMed  Google Scholar 

  • Gorina R, Font-Nieves M, Márquez-Kisinousky L, Santalucia T, Planas AM. Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFκB signaling, MAPK, and Jak1/Stat1 pathways. Glia. 2011;59(2):242–55.

    Article  PubMed  Google Scholar 

  • Harvey Lodish AB, Lawrence Zipursky S, Matsudaira P, Baltimore D, Darnell J. Molecular cell biology. 4th ed. New York: W.H. Freeman; 2000.

    Google Scholar 

  • Hasel P, Rose IVL, Sadick JS, Kim RD, Liddelow SA. Neuroinflammatory astrocyte subtypes in the mouse brain. Nat Neurosci. 2021;24:1475–87.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A. The innate immune response to bacterial flagellin is mediated by toll-like receptor 5. Nature. 2001;410:1099–103. (0028-0836 (Print))

    Article  CAS  PubMed  Google Scholar 

  • Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, et al. A toll-like receptor recognizes bacterial DNA. Nature. 2000;408(6813):740–5.

    Article  CAS  PubMed  Google Scholar 

  • Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, Horiuchi T, Tomizawa H, Takeda K, Akira S. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol. 2002;3(2):196–200.

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin PD, Heath WR, Baxter AG. The clonal selection theory: 50 years since the revolution. Nat Immunol. 2007;8(10):1019–26.

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Gandini MA, Chen L, M’Dahoma S, Stemkowski PL, Chung H, Muruve DA, Zamponi GW. Hyperactivity of innate immunity triggers pain via TLR2-IL-33-mediated neuroimmune crosstalk. Cell Rep. 2020;33(1):108233.

    Article  CAS  PubMed  Google Scholar 

  • Ifuku M, Hinkelmann L, Kuhrt LD, Efe IE, Kumbol V, Buonfiglioli A, Krüger C, Jordan P, Fulde M, Noda M, et al. Activation of toll-like receptor 5 in microglia modulates their function and triggers neuronal injury. Acta Neuropathol Commun. 2020;8(1):159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ip YT, Reach M, Engstrom Y, Kadalayil L, Cai H, González-Crespo S, Tatei K, Levine M. Dif, a dorsal-related gene that mediates an immune response in drosophila. Cell. 1993;75(4):753–63.

    Article  CAS  PubMed  Google Scholar 

  • Irazoqui JE, Troemel ER, Feinbaum RL, Luhachack LG, Cezairliyan BO, Ausubel FM. Distinct pathogenesis and host responses during infection of C. elegans by p. aeruginosa and s. aureus. PLOS Pathog. 2010a;6(7):e1000982.

    Article  PubMed  PubMed Central  Google Scholar 

  • Irazoqui JE, Urbach JM, Ausubel FM. Evolution of host innate defence: insights from caenorhabditis elegans and primitive invertebrates. Nat Rev Immunol. 2010b;10(1):47–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janeway CA. Pillars article: approaching the asymptote? Evolution and revolution in immunology. Cold spring harb symp quant biol. J Immunol. 2013;191(9):4475.

    CAS  PubMed  Google Scholar 

  • Janeway CA Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;54(Pt 1):1–13. (0091-7451 (Print))

    Article  CAS  PubMed  Google Scholar 

  • Jansen PAM, Rodijk-Olthuis D, Hollox EJ, Kamsteeg M, Tjabringa GS, de Jongh GJ, van Vlijmen-Willems IMJJ, Bergboer JGM, van Rossum MM, de Jong EMGJ, et al. Beta-defensin-2 protein is a serum biomarker for disease activity in psoriasis and reaches biologically relevant concentrations in lesional skin. PLoS One. 2009;4(3):e4725.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ji R-R. Neuroimmune interactions in itch: do chronic itch, chronic pain, and chronic cough share similar mechanisms? Pulm Pharmacol Ther. 2015;35:81–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji R-R, Donnelly CR, Nedergaard M. Astrocytes in chronic pain and itch. Nat Rev Neurosci. 2019;20(11):667–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ** MS, Lee J-O. Structures of the toll-like receptor family and its ligand complexes. Immunity. 2008;29(2):182–91.

    Article  CAS  PubMed  Google Scholar 

  • ** MS, Kim SE, Heo JY, Lee ME, Kim HM, Paik S-G, Lee H, Lee J-O. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell. 2007;130(6):1071–82.

    Article  CAS  PubMed  Google Scholar 

  • Kanno A, Tanimura N, Ishizaki M, Ohko K, Motoi Y, Onji M, Fukui R, Shimozato T, Yamamoto K, Shibata T, et al. Targeting cell surface TLR7 for therapeutic intervention in autoimmune diseases. Nat Commun. 2015;6(1):6119.

    Article  CAS  PubMed  Google Scholar 

  • Karikó K, Ni H, Capodici J, Lamphier M, Weissman D. mRNA is an endogenous ligand for toll-like receptor 3. J Biol Chem. 2004;279(13):12542–50.

    Article  PubMed  Google Scholar 

  • Kawai T, Takeuchi O, Fujita T, Inoue J-i, Mühlradt PF, Sato S, Hoshino K, Akira S. Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J Immunol. 2001;167(10):5887.

    Article  CAS  PubMed  Google Scholar 

  • Kelly MG, Alvero AB, Chen R, Silasi D-A, Abrahams VM, Chan S, Visintin I, Rutherford T, Mor G. Tlr-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Res. 2006;66(7):3859.

    Article  CAS  PubMed  Google Scholar 

  • Kido-Nakahara M, Buddenkotte J, Kempkes C, Ikoma A, Cevikbas F, Akiyama T, Nunes F, Seeliger S, Hasdemir B, Mess C, et al. Neural peptidase endothelin-converting enzyme 1 regulates endothelin 1-induced pruritus. J Clin Invest. 2014;124(6):2683–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kieser KJ, Kagan JC. Multi-receptor detection of individual bacterial products by the innate immune system. Nat Rev Immunol. 2017;17(6):376–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Kim MA, Cho I-H, Kim MS, Lee S, Jo E-K, Choi S-Y, Park K, Kim JS, Akira S, et al. A critical role of toll-like receptor 2 in nerve injury-induced spinal cord glial cell activation and pain hypersensitivity. J Biol Chem. 2007;282(20):14975–83.

    Article  CAS  PubMed  Google Scholar 

  • Kim D, You B, Lim H, Lee SJ. Toll-like receptor 2 contributes to chemokine gene expression and macrophage infiltration in the dorsal root ganglia after peripheral nerve injury. Mol Pain. 2011;7:74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klimovich A, Giacomello S, Björklund Å, Faure L, Kaucka M, Giez C, Murillo-Rincon AP, Matt A-S, Willoweit-Ohl D, Crupi G, et al. Prototypical pacemaker neurons interact with the resident microbiota. Proc Natl Acad Sci. 2020;117(30):17854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kremer AE, Mettang T, Weisshaar E. Non-dermatological challenges of chronic itch. Acta Derm Venereol. 2020;100:adv00025. (1651-2057 (Electronic))

    Article  PubMed  Google Scholar 

  • Kupari J, Usoskin D, Parisien M, Lou D, Hu Y, Fatt M, Lönnerberg P, Spångberg M, Eriksson B, Barkas N, et al. Single cell transcriptomics of primate sensory neurons identifies cell types associated with chronic pain. Nat Commun. 2021;12(1):1510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurban MS, Boueiz A, Kibbi A-G. Cutaneous manifestations of chronic kidney disease. Clin Dermatol. 2008;26(3):255–64.

    Article  PubMed  Google Scholar 

  • Lacagnina MJ, Watkins LR, Grace PM. Toll-like receptors and their role in persistent pain. Pharmacol Ther. 2018;184:145–58.

    Article  CAS  PubMed  Google Scholar 

  • Lafon M, Megret F, Lafage M, Prehaud C. The innate immune facet of brain. J Mol Neurosci. 2006;29(3):185–94.

    Article  CAS  PubMed  Google Scholar 

  • Latz E, Verma A, Visintin A, Gong M, Sirois CM, Klein DCG, Monks BG, McKnight CJ, Lamphier MS, Duprex WP, et al. Ligand-induced conformational changes allosterically activate toll-like receptor 9. Nat Immunol. 2007;8(7):772–9.

    Article  CAS  PubMed  Google Scholar 

  • Lebre MC, van der Aar AMG, van Baarsen L, van Capel TMM, Schuitemaker JHN, Kapsenberg ML, de Jong EC. Human keratinocytes express functional toll-like receptor 3, 4, 5, and 9. J Investig Dermatol. 2007;127(2):331–41.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhang H, Zhang H, Kosturakis AK, Jawad AB, Dougherty PM. Toll-like receptor 4 signaling contributes to paclitaxel-induced peripheral neuropathy. J Pain. 2014;15(7):712–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Ding JL. The molecular mechanisms of TLR-signaling cooperation in cytokine regulation. Immunol Cell Biol. 2016;94(6):538–42.

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Yang Y, Qiu Z, Staron M, Hong F, Li Y, Wu S, Li Y, Hao B, Bona R, et al. Folding of toll-like receptors by the HSP90 paralogue gp96 requires a substrate-specific cochaperone. Nat Commun. 2010a;1(1):79.

    Article  PubMed  Google Scholar 

  • Liu T, Xu Z-Z, Park C-K, Berta T, Ji R-R. Toll-like receptor 7 mediates pruritus. Nat Neurosci. 2010b;13(12):1460–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T, Berta T, Xu ZZ, Park CK, Zhang L, Lü N, Liu Q, Liu Y, Gao YJ, Liu YC, et al. TLR3 deficiency impairs spinal cord synaptic transmission, central sensitization, and pruritus in mice. J Clin Investig. 2012a;122(6):2195–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T, Gao YJ, Ji R-R. Emerging role of toll-like receptors in the control of pain and itch. Neurosci Bull. 2012b;28(2):131–44. (1995-8218 (Electronic))

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X-J, Zhang Y, Liu T, Xu Z-Z, Park C-K, Berta T, Jiang D, Ji R-R. Nociceptive neurons regulate innate and adaptive immunity and neuropathic pain through myd88 adapter. Cell Res. 2014;24(11):1374–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T, Han Q, Chen G, Huang Y, Zhao L-X, Berta T, Gao Y-J, Ji R-R. Toll-like receptor 4 contributes to chronic itch, alloknesis, and spinal astrocyte activation in male mice. Pain. 2016;157(4):806–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T, Zhang L, Joo D, Sun S-C. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo X, Huh Y, Bang S, He Q, Zhang L, Matsuda M, Ji R-R. Macrophage toll-like receptor 9 contributes to chemotherapy-induced neuropathic pain in male mice. J Neurosci. 2019;39(35):6848–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Haynes RL, Sidman RL, Vartanian T. TLR8: an innate immune receptor in brain, neurons and axons. Cell Cycle. 2007;6(23):2859–68.

    Article  CAS  PubMed  Google Scholar 

  • Madan V, Lear JT, Szeimies R-M. Non-melanoma skin cancer. Lancet. 2010;375(9715):673–85.

    Article  CAS  PubMed  Google Scholar 

  • Materazzi S, Fusi C, Benemei S, Pedretti P, Patacchini R, Nilius B, Prenen J, Creminon C, Geppetti P, Nassini R. TRPA1 and TRPV4 mediate paclitaxel-induced peripheral neuropathy in mice via a glutathione-sensitive mechanism. Pflugers Arch. 2012;463(4):561–9.

    Article  CAS  PubMed  Google Scholar 

  • McKimmie CS, Fazakerley JK. In response to pathogens, glial cells dynamically and differentially regulate toll-like receptor gene expression. J Neuroimmunol. 2005;169(1):116–25.

    Article  CAS  PubMed  Google Scholar 

  • McWhirter SM, Fitzgerald KA, Rosains J, Rowe DC, Golenbock DT, Maniatis T. IFN-regulatory factor 3-dependent gene expression is defective in TBK1-deficient mouse embryonic fibroblasts. Proc Natl Acad Sci. 2004;101(1):233.

    Article  CAS  PubMed  Google Scholar 

  • Medzhitov R, Preston-Hurlburt P, Janeway CA. A human homologue of the drosophila toll protein signals activation of adaptive immunity. Nature. 1997;388(6640):394–7.

    Article  CAS  PubMed  Google Scholar 

  • Mielcarska MB, Bossowska-Nowicka M, Toka FN. Cell surface expression of endosomal toll-like receptors-A necessity or a superfluous duplication? Front Immunol. 2021;11:620972.

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller LS. Toll-like receptors in skin. Adv Dermatol. 2008;24:71–87.

    Article  PubMed  PubMed Central  Google Scholar 

  • Min H, Cho W-H, Lee H, Choi B, Kim Y-J, Lee HK, Joo Y, Jung SJ, Choi S-Y, Lee S, et al. Association of TRPV1 and TLR4 through the TIR domain potentiates TRPV1 activity by blocking activation-induced desensitization. Mol Pain. 2018;14:1744806918812636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Modlin RL. Innate immunity: ignored for decades, but not forgotten. J Invest Dermatol. 2012;132(3 Pt 2):882–6.

    Article  CAS  PubMed  Google Scholar 

  • Mohammad Hosseini A, Majidi J, Baradaran B, Yousefi M. Toll-like receptors in the pathogenesis of autoimmune diseases. Adv Pharm Bull. 2015;5(Suppl 1):605–14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore C, Gupta R, Jordt S-E, Chen Y, Liedtke WB. Regulation of pain and itch by TRP channels. Neurosci Bull. 2018;34(1):120–42.

    Article  CAS  PubMed  Google Scholar 

  • Navarro L, David M. P38-dependent activation of interferon regulatory factor 3 by lipopolysaccharide. J Biol Chem. 1999;274(50):35535–8.

    Article  CAS  PubMed  Google Scholar 

  • Nicotra L, Loram LC, Watkins LR, Hutchinson MR. Toll-like receptors in chronic pain. Exp Neurol. 2012;234(2):316–29.

    Article  CAS  PubMed  Google Scholar 

  • Ohsawa M, Miyabe Y, Katsu H, Yamamoto S, Ono H. Identification of the sensory nerve fiber responsible for lysophosphatidic acid-induced allodynia in mice. Neuroscience. 2013;247:65–74.

    Article  CAS  PubMed  Google Scholar 

  • Ohto U, Ishida H, Shibata T, Sato R, Miyake K, Shimizu T. Toll-like receptor 9 contains two DNA binding sites that function cooperatively to promote receptor dimerization and activation. Immunity. 2018;48(4):649–58.e644.

    Article  CAS  PubMed  Google Scholar 

  • Olson JK, Miller SD. Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol. 2004;173(6):3916.

    Article  CAS  PubMed  Google Scholar 

  • Ossipov MH, Zhang E-T, Carvajal C, Gardell L, Quirion R, Dumont Y, Lai J, Porreca F. Selective mediation of nerve injury-induced tactile hypersensitivity by neuropeptide y. J Neurosci. 2002;22(22):9858–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park BS, Song DH, Kim HM, Choi B-S, Lee H, Lee J-O. The structural basis of lipopolysaccharide recognition by the TLR4–MD-2 complex. Nature. 2009;458(7242):1191–5.

    Article  CAS  PubMed  Google Scholar 

  • Park C-K, Xu Z-Z, Berta T, Han Q, Chen G, Liu X-J, Ji R-R. Extracellular microRNAs activate nociceptor neurons to elicit pain via TLR7 and TRPA1. Neuron. 2014;82(1):47–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkin J, Cohen B. An overview of the immune system. Lancet. 2001;357(9270):1777–89.

    Article  CAS  PubMed  Google Scholar 

  • Patapoutian A, Tate S, Woolf CJ. Transient receptor potential channels: targeting pain at the source. Nat Rev Drug Discov. 2009;8(1):55–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinho-Ribeiro FA, Verri WA Jr, Chiu IM. Nociceptor sensory neuron-immune interactions in pain and inflammation. Trends Immunol. 2017;38(1):5–19.

    Article  CAS  PubMed  Google Scholar 

  • Pujol N, Link EM, Liu LX, Kurz CL, Alloing G, Tan M-W, Ray KP, Solari R, Johnson CD, Ewbank JJ. A reverse genetic analysis of components of the toll signaling pathway in caenorhabditis elegans. Curr Biol. 2001;11(11):809–21.

    Article  CAS  PubMed  Google Scholar 

  • Qi J, Buzas K, Fan H, Cohen JI, Wang K, Mont E, Klinman D, Oppenheim JJ, Howard OMZ. Painful pathways induced by TLR stimulation of dorsal root ganglion neurons. J Immunol. 2011;186(11):6417–26.

    Article  CAS  PubMed  Google Scholar 

  • Randow F, Seed B. Endoplasmic reticulum chaperone gp96 is required for innate immunity but not cell viability. Nat Cell Biol. 2001;3(10):891–6.

    Article  CAS  PubMed  Google Scholar 

  • Ren K, Dubner R. Interactions between the immune and nervous systems in pain. Nat Med. 2010;16(11):1267–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renthal W, Tochitsky I, Yang L, Cheng Y-C, Li E, Kawaguchi R, Geschwind DH, Woolf CJ. Transcriptional reprogramming of distinct peripheral sensory neuron subtypes after axonal injury. Neuron. 2020;108(1):128–44.e129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF. A family of human receptors structurally related to drosophila toll. Proc Natl Acad Sci U S A. 1998;95(2):588–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito O, Svensson CI, Buczynski MW, Wegner K, Hua XY, Codeluppi S, Schaloske RH, Deems RA, Dennis EA, Yaksh TL. Spinal glial TLR4-mediated nociception and production of prostaglandin E(2) and TNF. Br J Pharmacol. 2010;160(7):1754–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scumpia PO, Kelly KM, Reeves WH, Stevens BR. Double-stranded RNA signals antiviral and inflammatory programs and dysfunctional glutamate transport in TLR3-expressing astrocytes. Glia. 2005;52(2):153–62.

    Article  PubMed  Google Scholar 

  • Seong S-Y, Matzinger P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol. 2004;4(6):469–78.

    Article  CAS  PubMed  Google Scholar 

  • Shen S, Lim G, You Z, Ding W, Huang P, Ran C, Doheny J, Caravan P, Tate S, Hu K, et al. Gut microbiota is critical for the induction of chemotherapy-induced pain. Nat Neurosci. 2017;20(9):1213–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi XQ, Zekki H, Zhang J. The role of TLR2 in nerve injury-induced neuropathic pain is essentially mediated through macrophages in peripheral inflammatory response. Glia. 2011;59(2):231–41.

    Article  PubMed  Google Scholar 

  • Shimizu Y, Sonoda A, Nogi C, Ogushi Y, Kanda R, Yamaguchi S, Nohara N, Aoki T, Yamada K, Nakata J, et al. B-type (brain) natriuretic peptide and pruritus in hemodialysis patients. Int J Nephrol Renovasc Dis. 2014;7:329–35.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sims JE, March CJ, Cosman D, Widmer MB, MacDonald HR, McMahan CJ, Grubin CE, Wignall JM, Jackson JL, Call SM, et al. cDNA expression cloning of the IL-1 receptor, a member of the immunoglobulin superfamily. Science. 1988;241(4865):585.

    Article  CAS  PubMed  Google Scholar 

  • Steward R. Dorsal, an embryonic polarity gene in drosophila, is homologous to the vertebrate proto-oncogene, c-rel. Science. 1987;238(4827):692.

    Article  CAS  PubMed  Google Scholar 

  • Su X-Y, Chen M, Yuan Y, Li Y, Guo S-S, Luo H-Q, Huang C, Sun W, Li Y, Zhu MX, et al. Central processing of itch in the midbrain reward center. Neuron. 2019;102(4):858–72.e855.

    Article  CAS  PubMed  Google Scholar 

  • Szabo-Pardi TA, Barron LR, Lenert ME, Burton MD. Sensory neuron TLR4 mediates the development of nerve-injury induced mechanical hypersensitivity in female mice. Brain Behav Immun. 2021;97:42–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szöllősi AG, McDonald I, Szabó IL, Meng J, van den Bogaard E, Steinhoff M. TLR3 in chronic human itch: a keratinocyte-associated mechanism of itch sensitization. J Investig Dermatol. 2019;139(11):2393–6.e2396.

    Article  PubMed  Google Scholar 

  • Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805–20.

    Article  CAS  PubMed  Google Scholar 

  • Tan Y, Kagan JC. Innate immune signaling organelles display natural and programmable signaling flexibility. Cell. 2019;177(2):384–98.e311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan Y, Zanoni I, Cullen TW, Goodman AL, Kagan JC. Mechanisms of toll-like receptor 4 endocytosis reveal a common immune-evasion strategy used by pathogenic and commensal bacteria. Immunity. 2015;43(5):909–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanga FY, Nutile-McMenemy N, DeLeo JA. The CNS role of toll-like receptor 4 in innate neuroimmunity and painful neuropathy. Proc Natl Acad Sci U S A. 2005;102(16):5856–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanji H, Ohto U, Motoi Y, Shibata T, Miyake K, Shimizu T. Autoinhibition and relief mechanism by the proteolytic processing of toll-like receptor 8. Proc Natl Acad Sci. 2016;113(11):3012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tse KH, Chow KBS, Leung WK, Wong YH, Wise H. Primary sensory neurons regulate toll-like receptor-4-dependent activity of glial cells in dorsal root ganglia. Neuroscience. 2014;279:10–22.

    Article  CAS  PubMed  Google Scholar 

  • Usoskin D, Furlan A, Islam S, Abdo H, Lönnerberg P, Lou D, Hjerling-Leffler J, Haeggström J, Kharchenko O, Kharchenko PV, et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci. 2015;18(1):145–53.

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Deng L, Hong M, Akkaraju GR, Inoue J-i, Chen ZJ. Tak1 is a ubiquitin-dependent kinase of MKK and IKK. Nature. 2001;412(6844):346–51.

    Article  CAS  PubMed  Google Scholar 

  • Wang T-T, Xu X-Y, Lin W, Hu D-D, Shi W, Jia X, Wang H, Song N-J, Zhang Y-Q, Zhang L. Activation of different heterodimers of TLR2 distinctly mediates pain and itch. Neuroscience. 2020;429:245–55.

    Article  CAS  PubMed  Google Scholar 

  • Wani KA, Goswamy D, Irazoqui JE. Nervous system control of intestinal host defense in C. elegans. Curr Opin Neurobiol. 2020;62:1–9.

    Article  CAS  PubMed  Google Scholar 

  • Whitham S, McCormick S, Baker B. The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato. Proc Natl Acad Sci U S A. 1996;93(16):8776–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu F-x, Bian J-j, Miao X-r, Huang S-d, Xu X-w, Gong D-j, Sun Y-m, Lu Z-j, Yu W-f. Intrathecal siRNA against toll-like receptor 4 reduces nociception in a rat model of neuropathic pain. Int J Med Sci. 2010;7(5):251–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z-Z, Kim YH, Bang S, Zhang Y, Berta T, Wang F, Oh SB, Ji R-R. Inhibition of mechanical allodynia in neuropathic pain by TLR5-mediated A-fiber blockade. Nat Med. 2015;21(11):1326–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K, et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science. 2003a;301(5633):640.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto M, Sato S, Hemmi H, Uematsu S, Hoshino K, Kaisho T, Takeuchi O, Takeda K, Akira S. Tram is specifically involved in the toll-like receptor 4–mediated MyD88-independent signaling pathway. Nat Immunol. 2003b;4(11):1144–50.

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Liu P, Bai L, Trimmer JS, Bean BP, Ginty DD. Deep sequencing of somatosensory neurons reveals molecular determinants of intrinsic physiological properties. Neuron. 2019;103(4):598–616.e597.

    Article  Google Scholar 

  • Zanoni I, Ostuni R, Marek Lorri R, Barresi S, Barbalat R, Barton Gregory M, Granucci F, Kagan Jonathan C. CD14 controls the LPS-induced endocytosis of toll-like receptor 4. Cell. 2011;147(4):868–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeisel A, Hochgerner H, Lönnerberg P, Johnsson A, Memic F, van der Zwan J, Häring M, Braun E, Borm LE, La Manno G, et al. Molecular architecture of the mouse nervous system. Cell. 2018;174(4):999–1014.e1022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z-J, Guo J-S, Li S-S, Wu X-B, Cao D-L, Jiang B-C, et al. TLR8 and its endogenous ligand miR-21 contribute to neuropathic pain in murine DRG. J Exp Med. 2018;215(12):3019–3037. https://doi.org/10.1084/jem.20180800. PMID 30455267.

  • Zhao L-X, Jiang M, Bai X-Q, Cao D-L, Wu X-B, Zhang J, et al. (2021). TLR8 in the trigeminal ganglion contributes to the maintenance of trigeminal neuropathic pain in mice. Neurosci Bull. 2021;37(4):550–562. https://doi.org/10.1007/s12264-020-00621-4. PMID 33355900.

  • Zuany-Amorim C, Hastewell J, Walker C. Toll-like receptors as potential therapeutic targets for multiple diseases. Nat Rev Drug Discov. 2002;1(10):797–807. https://doi.org/10.1038/nrd914. PPMID 12360257.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher R. Donnelly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Andriessen, A.S., Hezarkhani, E., Donnelly, C.R. (2023). Toll-Like Receptors in Pain and Itch. In: Ji, RR., Cheng, J., Ji, J. (eds) Neuroimmune Interactions in Pain . Springer, Cham. https://doi.org/10.1007/978-3-031-29231-6_8

Download citation

Publish with us

Policies and ethics

Navigation