A Co-caching Strategy for Edges Based on Federated Learning and Regional Prevalence

  • Conference paper
  • First Online:
Edge Computing and IoT: Systems, Management and Security (ICECI 2022)

Abstract

With the rise of data storage computing and IoT technology. The increase in data volume and user demand, the accurate delivery of data and low latency during transmission become important factors that affect the end-user experience. To address this issue, previous authors have proposed the concept of edge computings. In the general environment of edge computing, reasonable scheduling of edge caches can largely achieve low latency and high efficiency, thus improving user experience. In this paper, based on existing research, we propose a combination of a joint learning framework for cache prediction based on region popularity and an edge collaborative cache value optimization method to further improve cache hit rate and cache utilization efficiency. The method obtains excellent expected results through simulation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 67.40
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 85.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhao, M.: A review of edge computing technologies and applications. Comput. Sci. 47(S1), 268–272+282 (2020)

    Google Scholar 

  2. Zhou, J.: A review of edge computing technology research at home and abroad. Comput. Age 08, 8–11 (2021). https://doi.org/10.16644/j.cnki.cn33-1094/tp.2021.08.002

    Article  Google Scholar 

  3. He, Z.Y., Dong, X.C., Zhu, Q.H.: Research on the classification of Baidu encyclopedia entries based on the perspective of users’ usage behavior. Data Anal. Knowl. Discov. 3(06), 117–122 (2019)

    Google Scholar 

  4. Zhang, L.-B., Guo, Q., Wu, X.-B., Liang, Y.-Z., Liu, J.-G.: Research on user clustering method based on multidimensional behavior analysis. J. Univ. Electron. Sci. Technol. 49(02), 315–320 (2020)

    Google Scholar 

  5. Zhou, K., Wu, Y.C., Wu, J.K.: Research on the prediction model of Internet advertising click rate based on user portrait. Software 42(02), 171–174 (2021)

    Google Scholar 

  6. Chen, N.N.: Research on integrated utility-based cache placement and task scheduling optimization methods in edge computing environment. Zhengzhou University of Light Industry (2022). https://doi.org/10.27469/d.cnki.gzzqc.2022.000027

  7. Jiang, H., Dai, X., **ao, Z., Iyengar, A.: Joint task offloading and resource allocation for energy-constrained mobile edge computing. IEEE Trans. Mob. Comput. (2022). https://doi.org/10.1109/TMC.2022.3150432

  8. Zhou, J., Shen, H.J., Lin, C.Y., Cao, Z.F., Dong, X.R.L.: Advances in privacy-preserving research on edge computing. Comput. Res. Dev. 57(10), 2027–2051 (2020)

    Google Scholar 

  9. Wang, Q.: Research on security and privacy protection technologies in edge computing. J. **ling Inst. Sci. Technol. 36(04), 11–17 (2020). https://doi.org/10.16515/j.cnki.32-1722/n.2020.04.003

    Article  Google Scholar 

  10. Fei, L.: Research on computational offloading and resource allocation strategies in edge computing. University of Electronic Science and Technology (2022). https://doi.org/10.27005/d.cnki.gdzku.2022.003502

  11. Liu, H.-Y., Wang, G., Yang, W.-C., Wang, J.-L., Xu, Y., Zhao, D.-L.: Popularity edge caching strategy based on random geometry theory. J. Electron. Inform. 43(12), 3427–3433 (2021)

    Google Scholar 

  12. Wu, R.: Research on efficient edge caching strategy based on machine learning. Huazhong University of Science and Technology (2021). https://doi.org/10.27157/d.cnki.ghzku.2021.001857

  13. Kai, J.: Research on computational offloading and content caching based on reinforcement learning in mobile edge computing. Three Gorges University (2021). https://doi.org/10.27270/d.cnki.gsxau.2021.000193

  14. Liu, M.: Research on edge caching strategy based on spatio-temporal correlation analysis of user experience. Nan**g University of Posts and Telecommunications (2021). https://doi.org/10.27251/d.cnki.gnjdc.2021.000586

  15. Yan, M., Lin, Y., Nie, Z.S., Cao, Y.F., Pi, H., Zhang, L.: A training method to improve the robustness of federated learning models. Comput. Sci. 49(S1), 496–501 (2022)

    Google Scholar 

  16. Yin, C., Qu, R.: Federated learning algorithms based on personalized differential privacy. Comput. Appl. 1–9 (2022)

    Google Scholar 

  17. Ali, T.A.A., **ao, Z., Sun, J., Mirjalili, S., Havyarimana, V., Jiang, H.: Optimal Design of IIR wideband digital differentiators and integrators using salp swarm algorithm. Knowl.-Based Syst. 182 (2019)

    Google Scholar 

  18. Wu, X., Li, J., Mao, W., Wu, Y.H., Zheng, L.Y.: Prediction of e-commerce users’ purchase behavior based on GA-XGBoost. J. Zhejiang Wanli Coll. 35(04), 86–92 (2022). https://doi.org/10.13777/j.cnki.issn1671-2250.2022.04.011

  19. Xu, D., **ao, Y.: Website user behavior prediction based on machine learning technology. Mod. Electron. Technol. 42(04), 94–96+100 (2019). https://doi.org/10.16652/j.issn.1004-373x.2019.04.022

  20. Zhang, S.: Research on user purchase behavior prediction based on machine learning. Chang’an University (2020). https://doi.org/10.26976/d.cnki.gchau.2020.000772

  21. **ao, L.: Analysis of user behavior in social networks. Small and medium-sized enterprise management and technology. Zhongjian J. (08), 115–116 (2019)

    Google Scholar 

  22. Zeng, F., Li, Q., **ao, Z., Havyarimana, V., Bai, J.: A Price-based optimization strategy of power control and resource allocation in full-duplex heterogeneous macrocell-femtocell networks. IEEE Access 6, 42004–42013 (2018)

    Article  Google Scholar 

  23. Fu, J.: Research on angular time delay estimation and single base station localization algorithm based on 5G large-scale antenna. Bei**g University of Posts and Telecommunications (2021). https://doi.org/10.26969/d.cnki.gbydu.2021.000248

  24. Hu, Q., Wu, M., Guo, S., Peng, L.: A cache random placement policy for content-centric networks. J. **’an Univ. Electron. Sci. Technol. 41(06), 131–136+187 (2014)

    Google Scholar 

  25. Lv, H., He, Y.X., Huang, C.H.: Randomized caching reliable multicast algorithm. J. Wuhan Univ. Technol. 31(18), 24–27+75 (2009)

    Google Scholar 

  26. Dynasty, Gao, L., Gao Full Force: Collaborative caching strategy for data hierarchy in edge computing. J. Basic Sci. Text. Univ. 33(03), 106–112 (2020). https://doi.org/10.13338/j.issn.1006-8341.2020.03.017

  27. Zeng, F., et al.: Resource allocation and trajectory optimization for QoE provisioning in energy-efficient UAV-enabled wireless networks. IEEE Trans. Veh. Technol. 69(7), 7634–7647 (2020)

    Article  Google Scholar 

  28. Zhou, T.Q., Wu, W.J., Li, H.L., Dong, J.Y., Gao, J.J.: Analysis of uplink transmission performance and design of base station configuration for ultra-dense networks enhanced by mobile edge computing. High. Tech. Commun. 31(09), 942–952 (2021)

    Google Scholar 

  29. Wu, Z.: Research on dynamic resource allocation delay optimization scheme for edge computing. Civil Aviation Flight Academy of China (2022). https://doi.org/10.27222/d.cnki,gzgmh.2022.000050

  30. Hu, Z., Zeng, F., **ao, Z., Fu, B., Jiang, H., Chen, H.: Computation efficiency maximization and QoE-provisioning in UAV-enabled MEC communication systems. IEEE Trans. Netw. Sci. Eng. 8(2), 1630–1645 (2021)

    Article  MathSciNet  Google Scholar 

  31. Liu, D., Cao, Z., Hou, M., Rong, H., Jiang, H.: Pushing the limits of transmission concurrency for low power wireless networks. ACM Trans. Sens. Networks 16(4), 40:1–40:29 (2020)

    Google Scholar 

  32. Li, R..: Design and implementation of accurate sub-circuit metering of electricity consumption at base stations based on edge computing. Tian** Normal University (2022). https://doi.org/10.27363/d.cnki.gtsfu.2022.000905

  33. Qian, C., Liu, D., Jiang, H.: Harmonizing energy efficiency and QoE for brightness scaling-based mobile video streaming. In: IWQoS 2022, p. 1 (2022)

    Google Scholar 

  34. Liu, D., Cao, Z., He, Y., Ji, X., Hou, M., Jiang, H.: Exploiting concurrency for opportunistic forwarding in duty-cycled IoT networks. ACM Trans. Sens. Networks 15(3), 31:1–31:33 (2019)

    Google Scholar 

  35. Liu, D., Hou, M., Cao, Z., He, Y., Ji, X., Zheng, X.: COF: exploiting concurrency for low power opportunistic forwarding. In: ICNP 2015, pp. 32–42 (2015)

    Google Scholar 

  36. **ao, Z., et al.: Toward accurate vehicle state estimation under non-Gaussian noises. IEEE Internet Things J. 6(6), 10652–10664 (2019)

    Article  Google Scholar 

  37. Hu, J., et al.: BlinkRadar: non-intrusive driver eye-blink detection with UWB radar. In: Proceedings of IEEE ICDCS 2022 (2022)

    Google Scholar 

  38. Jiang, H., **ao, Z., Li, Z., Xu, J., Zeng, F., Wang, D.: An energy-efficient framework for internet of things underlaying heterogeneous small cell networks. IEEE Trans. Mob. Comput. 21(1), 31–43 (2022)

    Article  Google Scholar 

  39. Liu, D., Wu, X., Cao, Z., Liu, M., Li, Y., Hou, M.: CD-MAC: a contention detectable MAC for low duty-cycled wireless sensor networks. In: SECON 2015, pp. 37–45 (2015)

    Google Scholar 

  40. Su, W., Liu, D., Zhang, T., Jiang, H.: Towards device independent eavesdrop** on telephone conversations with built-in accelerometer. Proc. ACM Interact. Mob. Wearable Ubiquit. Technol. 5(4), 177:1–177:29 (2021)

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by the Scientific research projects funded by the Department of education of Hunan Province (No. 22C0497), the Huaihua University Double First-Class initiative Applied Characteristic Discipline of Control Science and Engineering(No. ZNKZN2021-10), the National Natural Science Foundation of China (No. 62172182), the Hunan Provincial Natural Science Foundation of China (No. 2020JJ4490), the Project of Hunan Provincial Social Science Foundation (No. 21JD046), the Huaihua University Project (No. HHUY2019-25), the Philosophy and Social Science Achievement Evaluation Committee of Huaihua (No. HSP2022YB40) and the Science and Technology Innovation 2030 Special Project Sub-Topics (No. 2018AAA0102100).

Hunan University Students’ Innovation and Entrepreneurship Training Program (202210548064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiwen Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, Z., Liu, Y., Gao, Y., Wen, W., Shi, Y., Peng, X. (2023). A Co-caching Strategy for Edges Based on Federated Learning and Regional Prevalence. In: **ao, Z., Zhao, P., Dai, X., Shu, J. (eds) Edge Computing and IoT: Systems, Management and Security. ICECI 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 478. Springer, Cham. https://doi.org/10.1007/978-3-031-28990-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28990-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28989-7

  • Online ISBN: 978-3-031-28990-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation