Federated Learning Based User Scheduling for Real-Time Multimedia Tasks in Edge Devices

  • Conference paper
  • First Online:
Edge Computing and IoT: Systems, Management and Security (ICECI 2022)

Abstract

Edge networks are highly volatile and the quality of device communication and computational resources change not only over time but also according to the movement of users. Current federation learning suffers from poor device network state and failure of devices to upload models in a timely manner. To address these problems, an intelligent scheduling mechanism that uses the predicted device state based on device information to select the appropriate device for federated learning is proposed in this paper. By focusing on information such as communication quality, computational resources, and location information, the information of edge devices is collected to analyze and predict the device network and computing resources to further analyze the state of devices in depth. Experiments are conducted on real datasets, and the experimental results show that the proposed scheduling method can make the global model fit faster than without the algorithm, which significantly improves the training efficiency of federated learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Su, W., Liu, D., Zhang, T., Jiang, H.: Towards device independent eavesdrop** on telephone conversations with built-in accelerometer. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 5(4), 1–29 (2021)

    Google Scholar 

  2. Bonawitz, K., et al.: Towards federated learning at scale: system design. Proc. Mach. Learn. Syst. 1, 374–388 (2019)

    Google Scholar 

  3. Aono, Y., Hayashi, T., Wang, L., Moriai, S.: Privacy-preserving deep learning via additively homomorphic encryption. IEEE Trans. Inf. Forensics Secur. 13(5), 1333–1345 (2017). https://doi.org/10.1109/TIFS.2017.2787987

    Article  Google Scholar 

  4. Hard, A., et al.: Federated learning for mobile keyboard prediction. ar**v preprint ar**v:1811.03604 (2018)

  5. Zeng, F., Li, Q., **ao, Z., Havyarimana, V., Bai, J.: A price-based optimization strategy of power control and resource allocation in full-duplex heterogeneous macrocell-femtocell networks. IEEE Access 6, 42004–42013 (2018)

    Article  Google Scholar 

  6. Zeng, F., et al.: Resource allocation and trajectory optimization for QoE provisioning in energy-efficient UAV-enabled wireless networks. IEEE Trans. Veh. Technol. 69(7), 7634–7647 (2020)

    Article  Google Scholar 

  7. Ali, T.A.A., **ao, Z., Sun, J., Mirjalili, S., Havyarimana, V., Jiang, H.: Optimal design of IIR wideband digital differentiators and integrators using salp swarm algorithm. Knowl.-Based Syst. 182, 104834 (2019)

    Google Scholar 

  8. Jiang, H., Cao, H., Liu, D., **ong, J., Cao, Z.: SmileAuth: using dental edge biometrics for user authentication on smartphones. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4(3), 1–24 (2020)

    Google Scholar 

  9. Liu, D., Cao, Z., Hou, M., Rong, H., Jiang, H.: Pushing the limits of transmission concurrency for low power wireless networks. ACM Trans. Sens. Netw. 16(4), 1–29 (2020)

    Google Scholar 

  10. **ao, Z., et al.: Toward accurate vehicle state estimation under non-Gaussian noises. IEEE Internet Things J. 6(6), 10652–10664 (2019)

    Article  Google Scholar 

  11. Hu, J., et al.: BlinkRadar: non-intrusive driver eye-blink detection with UWB radar. In: 2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS), pp. 1040–1050. IEEE (2022)

    Google Scholar 

  12. Lu, X., Liao, Y., Lio, P., Pan, H.: An asynchronous federated learning mechanism for edge network computing. J. Comput. Res. Dev. 57(12), 2571–2582 (2020)

    Google Scholar 

  13. Filho, C.P., et al.: A systematic literature review on distributed machine learning in edge computing. Sensors 22(7), 2665 (2022). https://doi.org/10.3390/s22072665

    Article  Google Scholar 

  14. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. 10(2), 1–19 (2019). https://doi.org/10.1145/3298981

    Article  Google Scholar 

  15. Zhang, P.-C., Wei, X.-M., **, H.-Y.: Dynamic QoS optimization method based on federal learning in mobile edge computing. Chin. J. Comput. 44(12), 2431–2446 (2021)

    Google Scholar 

  16. Liu, Y., Kang, Y., **ng, C., Chen, T., Yang, Q.: A secure federated transfer learning framework. IEEE Intell. Syst. 35(4), 70–82 (2020). https://doi.org/10.1109/MIS.2020.2988525

    Article  Google Scholar 

  17. Khan, L.U., et al.: Federated learning for edge networks: resource optimization and incentive mechanism. IEEE Commun. Mag. 58(10), 88–93 (2020). https://doi.org/10.1109/MCOM.001.1900649

    Article  Google Scholar 

  18. Liu, D., Cao, Z., He, Y., Ji, X., Hou, M., Jiang, H.: Exploiting concurrency for opportunistic forwarding in duty-cycled IoT networks. ACM Trans. Sens. Netw. 15(3), 1–33 (2019)

    Google Scholar 

  19. Hu, Z., Zeng, F., **ao, Z., Fu, B., Jiang, H., Chen, H.: Computation efficiency maximization and QoE-provisioning in UAV-enabled MEC communication systems. IEEE Trans. Netw. Sci. Eng. 8(2), 1630–1645 (2021)

    Article  MathSciNet  Google Scholar 

  20. Jiang, H., Dai, X., **ao, Z., Iyengar, A.K.: Joint task offloading and resource allocation for energy-constrained mobile edge computing. IEEE Trans. Mob. Comput. (2022). https://doi.org/10.1109/TMC.2022.3150432

    Article  Google Scholar 

  21. Jiang, H., **ao, Z., Li, Z., Xu, J., Zeng, F., Wang, D.: An energy-efficient framework for internet of things underlaying heterogeneous small cell networks. IEEE Trans. Mob. Comput. 21(1), 31–43 (2020)

    Article  Google Scholar 

  22. Liu, D., Hou, M., Cao, Z., He, Y., Ji, X., Zheng, X.: COF: exploiting concurrency for low power opportunistic forwarding. In: 2015 IEEE 23rd International Conference on Network Protocols (ICNP), pp. 32–42. IEEE (2015)

    Google Scholar 

  23. Qin, Z., Li, G.Y., Ye, H.: Federated learning and wireless communications. IEEE Wireless Commun. 28(5), 134–140 (2021). https://doi.org/10.1109/MWC.011.2000501

    Article  Google Scholar 

  24. Ji, S., Jiang, W., Walid, A., Li, X.: Dynamic sampling and selective masking for communication-efficient federated learning. IEEE Intell. Syst. 37(2), 27–34 (2022). https://doi.org/10.1109/MIS.2021.3114610

    Article  Google Scholar 

  25. Alferaidi, A., Yadav, K., Alharbi, Y., Viriyasitavat, W., Kautish, S., Dhiman, G.: Federated learning algorithms to optimize the client and cost selections. Math. Probl. Eng. 2022, 8514562 (2022). https://doi.org/10.1155/2022/8514562

    Article  Google Scholar 

  26. Huang, H., Li, R., Liu, J., Zhou, S., Lin, K., Zheng, Z.: ContextFL: context-aware federated learning by estimating the training and reporting phases of mobile clients. In: 2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS), pp. 570–580. IEEE (2022)

    Google Scholar 

  27. Liu, D., Wu, X., Cao, Z., Liu, M., Li, Y., Hou, M.: CD-MAC: a contention detectable MAC for low duty-cycled wireless sensor networks. In: 2015 12th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), pp. 37–45. IEEE (2015)

    Google Scholar 

  28. Qian, C., Liu, D., Jiang, H.: Harmonizing energy efficiency and QoE for brightness scaling-based mobile video streaming. In: 2022 IEEE/ACM 30th International Symposium on Quality of Service (IWQoS), pp. 1–10. IEEE (2022)

    Google Scholar 

  29. Inman, J.: Navigation and Nautical Astronomy: For the Use of British Seamen 3. In: Woodward, W.C., Rivington, J. (eds.) London, UK 1835 (1821)

    Google Scholar 

  30. Li, X., Yang, Z., Ren, J.: Improved naive bayes algorithm based on dual feature selection of mutual information and hierarchical clustering measurement & control technology 41(02), 36–40+69 (2022). https://doi.org/10.19708/j.ckjs.2022.02.005

  31. Wang, X., Dong, Y., Yu, Q., Geng, N.: Review of structural support vector machines. Comput. Eng. Appl. 56(17), 24–32 (2020). (in Chinese)

    Google Scholar 

  32. Liu, Z., Chu, N.: A weighted clustering splitting decision tree algorithm. Telecommun. Eng. 60(11), 1354–1360 (2020)

    Google Scholar 

  33. Li, X.: Using “random forest” for classification and regression. Chin. J. Appl. Entomol. 50(4), 1190–1197 (2013)

    Google Scholar 

  34. Wang, Y., Zhu, H., Xu, W.: A review on ROC curve and analysis. J. Guangdong Univ. Technol. 38(01), 46–53 (2021)

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by the Scientific research projects funded by the Department of education of Hunan Province (No. 22C0497), the Huaihua University Double First-Class initiative Applied Characteristic Discipline of Control Science and Engineering (No. ZNKZN2021-10), the National Natural Science Foundation of China (No. 62172182), the Hunan Provincial Natural Science Foundation of China (No. 2020JJ4490), the Project of Hunan Provincial Social Science Foundation (No. 21JD046), the Huaihua University Project (No. HHUY2019-25), the Philosophy and Social Science Achievement Evaluation Committee of Huaihua (No. HSP2022YB40) and the Science and Technology Innovation 2030 Special Project Sub-Topics (No. 2018AAA0102100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiwen Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wen, W., Liu, Y., Gao, Y., Zhu, Z., Shi, Y., Peng, X. (2023). Federated Learning Based User Scheduling for Real-Time Multimedia Tasks in Edge Devices. In: **ao, Z., Zhao, P., Dai, X., Shu, J. (eds) Edge Computing and IoT: Systems, Management and Security. ICECI 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 478. Springer, Cham. https://doi.org/10.1007/978-3-031-28990-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28990-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28989-7

  • Online ISBN: 978-3-031-28990-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation