Application of Graphene, Its Derivatives, and Their Nanocomposites

  • Chapter
  • First Online:
Recent Advances in Graphene Nanophotonics

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 190))

  • 403 Accesses

Abstract

The scientific and engineering community has become interested in graphene, on the ground of its distinctive bidimensional structure and superior physical, electrochemical, electrical, chemical, and optical qualities. The purpose of this chapter is to represent a prospective use of graphene in the fields of life science, medicine, forensic science, etc., basically in diagnostics for illnesses, near-infrared photothermal therapy, and scans to detect cancer. Now, graphene is being used in high-performing gadgets that produce and reserve energy, water purification and in biomedical areas for precise biosensing through graphene-quenched fluorescence and mass spectrometry using laser ionization and desorption on graphene. In forensic science, graphene is of intense interest. Drugs, including amphetamine, nitrazepam, and diazepam, that are relevant to forensics can be detected and quantified using graphene nanoparticles as a fluorescence sensor. In forensic electrochemistry, electrochemically reduced graphene oxide (ERGO) can be used to identify cocaine paracetamol, caffeine, and levamisole.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 139.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 139.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Inagaki, M., Kang, F.: Graphene derivatives: graphane, fluorographene, graphene oxide, graphyne and graphdiyne. J. Mater. Chem. A 2, 13193–13206 (2014)

    Google Scholar 

  2. Mao, S., Pu, H., Chen, J.: Graphene oxide and its reduction: modeling and experimental progress. RSC Adv. 2, 2643–2662 (2012)

    Article  Google Scholar 

  3. Dreyer, D.R., Park, S., Bielawski, C.W., Ruoff, R.S.: The chemistry of graphene oxide. Chem. Soc Rev. 39, 228–240 (2010)

    Article  Google Scholar 

  4. Nanda, S.S., Papaefthymiou, G.C., Yi, D.K.: Functionalization of graphene oxide and its biomedical applications. Crit. Rev. Solid State Mater. Sci. 40, 291–315 (2015)

    Article  Google Scholar 

  5. Yang, K., Feng, L., Shi, X., Zhuang, L.: Nanographene in biomedicine: theranostic applications. Chem. Soc. Rev. 42, 530–547 (2013)

    Article  Google Scholar 

  6. Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W., Tour, J.M.: Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010)

    Article  Google Scholar 

  7. Hummers, J., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  8. Priyadarsini, S., Mohanty, S., Mukherjee, S., Basu, S., Mishra, M.: Graphene and graphene oxide as nanomaterials for medicine and biology application. J. Nanostruct. Chem. 8, 123–137 (2018)

    Article  Google Scholar 

  9. Sofo, J., Chaudhari, A., Barber, G.: Graphane: a two-dimensional hydrocarbon. Phys. Rev. B. 75, 153401 (2007)

    Article  Google Scholar 

  10. Boukhvalov, D.W., Katsnelson, M.I., Lichtenstein, A.I.: Hydrogen on graphene: electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Phys. Rev. B. 77, 035427 (2008)

    Article  Google Scholar 

  11. Peng, Q., Dearden, A.K., Chen, X.J., Huang, C., Wen, X., De, S.: Peculiar pressure effect on poisson ratio of graphone as a strain damper. Nanoscale 7, 9975–9979 (2015)

    Article  Google Scholar 

  12. Pujari, B.S., Gusarov, S., Brett, M., Kovalenko, A.: Single-side-hydrogenated graphene: density functional theory predictions. Phys. Rev. B. 84, 041402 (2011)

    Article  Google Scholar 

  13. Sun, J., Du, S.: Application of graphene derivatives and their nanocomposites in tribology and lubrication: a review. RSC Adv. 9, 40642 (2019)

    Article  Google Scholar 

  14. Wang, S., Ang, P.K., Wang, Z., Tang, A.L.L., Thong, J.T.L., Loh, K.P.: High mobility, printable, and solution-processed graphene electronics. Nano Lett. 10, 92 (2010)

    Article  Google Scholar 

  15. Lu, G., Park, S., Yu, K., Ruoff, R.S., Ocola, L.E., Rosenmann, D., Chen, J.: Toward practical gas sensing with highly reduced graphene oxide: a new signal processing method to circumvent run-to-run and device-to-device variations. ACS Nano 5, 1154–1164 (2011)

    Article  Google Scholar 

  16. Chen, K., Lu, G., Chang, J., Mao, S., Yu, K., Cui, S., Chen, J.: Hg(II) ion detection using thermally reduced graphene oxide decorated with functionalized gold nanoparticles. Anal. Chem. 84, 4057–4062 (2012)

    Article  Google Scholar 

  17. He, Q., Wu, S., Yin, Z., Zhang, H.: Graphene-based electronic sensors. Chem. Sci. 3, 1764–1772 (2012)

    Article  Google Scholar 

  18. He, Q., Wu, S., Gao, S., Cao, X., Yin, Z., Li, H., Chen, P., Zhang, H.: Transparent, flexible, all-reduced graphene oxide thin film transistors. ACS Nano 5, 5038–5044 (2011)

    Article  Google Scholar 

  19. He, Q., Sudibya, H.G., Yin, Z., Wu, S., Li, H., Boey, F., Huang, W., Chen, P., Zhang, H.: Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications. ACS Nano 4, 3201–3208 (2010)

    Article  Google Scholar 

  20. Liu, Y., Yu, D., Zeng, C., Miao, Z., Dai, L.: Biocompatible graphene oxide-based glucose biosensors. Langmuir 26, 6158 (2010)

    Article  Google Scholar 

  21. Zhu, Y., Murali, S., Stoller, M.D., Velamakanni, A., Piner, R.D., Ruoff, R.S.: Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 48, 2118–2122 (2010)

    Article  Google Scholar 

  22. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., Ruoff, R.S.: Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010)

    Article  Google Scholar 

  23. Abdelkader, A.M., Karim, N., Valles, C., Afroj, S., Novoselov, K.S., Yeates, S.G.: Ultralexible and robust graphene supercapacitors printed on textiles for wearable electronics applications. Astrophys. Data Syst. 4(3), 035016 (2017)

    Google Scholar 

  24. Bober, E.S.: Final Report on Reverse Osmosis Membranes Containing Graphitic Oxide. U.S. Department of the Interior, p. 116 (1970)

    Google Scholar 

  25. Gao, W., Majumder, M., Alemany, L.B., Narayanan, T.N., Ibarra, M.A., Pradhan, B.K.: Engineered graphite oxide materials for application in water purification. ACS Appl. Mater. Interfaces 3(6), 1821–1826 (2011)

    Article  Google Scholar 

  26. Cohen-Tanugi, D., Grossman, J.C.: Water desalination across nano porous graphene. Nano Lett. 12(7), 3602–3608 (2012)

    Article  Google Scholar 

  27. Tansel, B.: Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: hydrated radius, hydration free energy and viscous effects. Separ. Purif. Technol. 86, 119–126 (2012)

    Article  Google Scholar 

  28. Abraham, J., Vasu, K.S., Williams, C.D., Gopinadhan, K., Su, Y., Cherian, C.T., Dix, J., Prestat, E., Haigh, S.J., Grigorieva, I.V., Carbone, P., Geim, A.K., Nair, R.R.: Tunable sieving of ions using graphene oxide membranes. N Nano. 12(6), 546 (2017)

    Article  Google Scholar 

  29. Schedin, F., Geim, A., Morozov, S., Hill, E., Blake, P., Katsnelson, M., Novoselov, K.: Nat. Mater. 6, 652 (2007)

    Article  Google Scholar 

  30. Tang, L., Wang, Y., Li, Y., Feng, H., Lu, J., Li, J.: Adv. Funct. Mater. 19, 2782 (2009)

    Article  Google Scholar 

  31. Morales-Narv’aez, E., Merkoçi, A.: Graphene oxide as an optical biosensing platform. 24(25), 3298–3308 (2012)

    Google Scholar 

  32. Cui, R., Han, Z., Pan, J., Abdel-Halim, E.S.: Direct electrochemistry of glucose oxidase and biosensing for glucose based on helical carbon nanotubes modified magnetic electrodes. Electrochim. Acta 58(1), 179–183 (2011)

    Article  Google Scholar 

  33. Tang, Z., Wu, H., Cort, J.R., Buchko, G.W., Zhang, Y., Shao, Y., Aksay, I.A., Liu, J., Lin, Y.: Constraint of DNA on functionalized graphene improves its biostability and specificity. Small. 6(11), 1205–1209 (2010)

    Google Scholar 

  34. Yang, K., Zhang, S., Zhang, G., Sun, X., Lee, S., Liu, Z.: Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 10(9), 3318–3323 (2010)

    Article  Google Scholar 

  35. Shen, A.J., Li, D.L., Cai, X.J., Dong, C.Y., Dong, H.Q., Wen, H.Y., Dai, G.H., Wang, P.J., Li, Y.Y.: Multifunctional nanocomposite based on graphene oxide for in vitro hepatocarcinoma diagnosis and treatment. J. Biomed. Mater. Res. Part A 100, 2499–2506 (2012)

    Google Scholar 

  36. Feng, L.Z., Zhang, S., Liu, Z.: Graphene-based gene transfection. Nanoscale 3, 1252–1257 (2011)

    Article  Google Scholar 

  37. Yang, X., Wang, Y., Huang, X., Ma, Y., Huang, Y., Yang, R., Duan, H., Chen, Y.: Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity. J. Mater. Chem. 21, 3448–3454 (2011)

    Article  Google Scholar 

  38. Bao, H.Q., Pan, Y.Z., **, Y., Sahoo, N. G., Wu, T., Li, L., Li, J., Gan, L.H.: Chitosan functionalized graphene oxide as a nanocarrier for drug and gene delivery. 7, 1569–1578 (2011)

    Google Scholar 

  39. Liu, Z., Robinson, J.T., Sun, X., Dai, H.: PEGylated nano-graphene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 130, 10876–10877 (2008)

    Article  Google Scholar 

  40. Mahmoudi, M., Sant, S., Wang, B., Laurent, S., Sen, T.: Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv. Drug Deliv. Rev. 63, 24–46 (2011)

    Article  Google Scholar 

  41. Sant, S., Hancock, M.J., Donnelly, J.P., Iyer, D., Khademhosseini, A.: Biomimetic gradient hydrogels for tissue engineering. Can J. Chem. Eng. 88, 899–911 (2010)

    Article  Google Scholar 

  42. Ku, S.H., Park, C.B.: Myoblast differentiation on graphene oxide. Biomaterials 34, 2017–2023 (2013)

    Article  Google Scholar 

  43. Nayak, T.R., Andersen, H., Makam, V.S., Khaw, C., Bae, S., Xu, X., Ee, R., Ahn, J., Hong, B.H., Pastorin, G., Ozyilmaz, B.: Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5, 4670–4678 (2011)

    Article  Google Scholar 

  44. Lee, W.C., Lim, C.H.Y., Shi, H., Tang, L.A., Wang, Y., Lim, C.T., Loh, K.P.: Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano 5, 7334–7341 (2011)

    Article  Google Scholar 

  45. Wang, Y., Lee, W.C., Manga, K.K., Ang, P.K., Lu, J., Liu, Y.P., Lim, C.T., Loh, K.P.: Fluorinated Graphene for Promoting neuroinduction of stem cells. Adv. Mater. Weinheim 24, 4285–4290 (2012)

    Article  Google Scholar 

  46. Chen, G.Y., Pang, D.P., Hwang, S.M., Tuan, H.Y., Hu, Y.C.: A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials 33, 418–427 (2012)

    Article  Google Scholar 

  47. Karlsson, M., Strandqvist, C., Jussi, J., Öberg, O., Petermann, I., Elmlund, L., Dunne, S., Fu, Y., Wang, Q.: Chemical sensors generated on wafer-scale epitaxial graphene for application to front-line drug detection. Sensors 19(10), 2214 (2019)

    Article  Google Scholar 

  48. Ãœlle-Linda, T.: Characterization of graphene-based sensors for forensic applications: Evaluating suitability of graphene-based resistive sensor for detection of amphetamine. Master thesis at Royal Institute of Technology, pp. 789, TRITA-EECS-EX (2019)

    Google Scholar 

  49. MA, X.: The Use of Graphene Quantum Dots as Detection Elements in Nanomaterials-Based Sensors for Forensic Applications. Degree Project in Engineering Physics, Stockholm, Sweden (2021)

    Google Scholar 

  50. Masteri-Farahani, M., Askari, F.: Design and photophysical insights on graphene quantum dots for use as nanosensor in differentiating methamphetamine and morphine in solution. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 206, 448–453 (2019)

    Google Scholar 

  51. Krampa, F.D., Aniweh, Y., Kanyong, P., Awandare, G.A.: Graphene nanoplatelet-based sensor for the detection of dopamine and N-acetyl-aminophenol in urine. Arab. J. Chem. 13(1), 3218–3225 (2020)

    Google Scholar 

  52. Rocha, D., Dornellas, R., Nossol, E., Richter, E., Silva, S., Santana, M., Munoz, R.: Electrochemically Reduced Graphene Oxide for Forensic Electrochemistry: Detection of Cocaine and its Adulterants Paracetamol, Caffeine and Levamisole, p. 29. Electroanalysis (2017)

    Google Scholar 

  53. Sun, X., Liu, Z., Welsher, K., Robinson, J.T., Goodwin, A., Zaric, S., Dai, H.: Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 1, 203–212 (2008)

    Google Scholar 

  54. Wen, H., Dong, C., Dong, H., Shen, A., **a, W., Cai, X., Song, Y., Li, X., Li, Y., Shi, D.: Engineered redox-responsive PEG detachment mechanism in PEGylated nano-graphene oxide for intracellular drug delivery. Small 8, 760–769 (2012)

    Google Scholar 

  55. Depan, D., Girase, B., Shah, J., Misra, R.: Structure–process–property relationship of the polar graphene oxide-mediated cellular response and stimulated growth of osteoblasts on hybrid chitosan network structure nanocomposite scaffolds. Acta Biomater. 7, 3432–3445 (2011)

    Google Scholar 

  56. Liu, Z., Robinson, J.T., Tabakman, S.M., Yang, K., Dai, H.: Carbon materials for drug delivery and cancer therapy. Mater. Today 14, 316–323 (2011)

    Google Scholar 

  57. Zhang, L., **a, J., Zhao, Q., Liu, L., Zhang, Z.: Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6, 537–544 (2010)

    Google Scholar 

  58. Sherlock, S.P., Tabakman, S.M., **e, L., Dai, H.: Photothermally enhanced drug delivery by ultrasmall multifunctional FeCo/graphitic shell nanocrystals. ACS Nano 5, 1505–1512 (2011)

    Google Scholar 

  59. Pan, Y., Bao, H., Sahoo, N.G., Wu, T., Li, L.: Water-soluble poly (N-isopropyl acrylamide)–graphene sheets synthesized via click chemistry for drug delivery. Adv Funct. Mater. 21, 2754–2763 (2011)

    Google Scholar 

  60. Rana, V.K., Choi, M.C., Kong, J.Y., Kim, G.Y., Kim, M.J., Kim, S.H., Mishra, S., Singh, R.P., Ha, C.S.: Synthesis and drug-delivery behavior of chitosan-functionalized graphene oxide hybrid nanosheets. Macromol. Mater. Eng. 296, 131–140 (2011)

    Google Scholar 

  61. Kodali, V.K., Scrimgeour, J., Kim, S., Hankinson, J.H., Carroll, K.M., Berger, C., Curtis, J.E.: Nonperturbative chemical modification of graphene for protein micropatterning. Langmuir 27, 863–865 (2011)

    Google Scholar 

  62. Tian, B., Wang, C., Zhang, S., Feng, L., Liu, Z.: Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano 5, 7000–7009 (2011)

    Google Scholar 

  63. Kim, H., Kim, W.J.: Photothermally controlled gene delivery by reduced graphene oxide–polyethylenimine nanocomposite. Small 10, 117–126 (2014)

    Google Scholar 

  64. Chen, W., Yi, P., Zhang, Y., Zhang, L., Deng, Z., Zhang, Z.: Composites of aminodextran-coated fe3o4 nanoparticles and graphene oxide for cellular magnetic resonance imaging. ACS Appl. Mater. Interfaces 3, 4085–4091 (2011)

    Google Scholar 

  65. Feng, L., Liu, Z.: Graphene in biomedicine: opportunities and challenges. Nanomedicine 6, 317–324 (2011)

    Google Scholar 

  66. Kim, H., Namgung, R., Singha, K., Oh, I., Kim, W.J.: Graphene oxide–polyethyleniminenanoconstruct as a gene delivery vector and bioimaging tool. Bioconjug. Chem. 22, 2558–2567 (2011)

    Google Scholar 

  67. La, W., Park, S., Yoon, H., Jeong, G., Lee, T., Bhang, S.H., Han, J.Y., Char, K., Kim, B.: Delivery of a therapeutic protein for bone regeneration from a substrate coated with graphene oxide. Small 9, 4051–4060 (2013)

    Google Scholar 

  68. Ma, X., Tao, H., Yang, K., Feng, L., Cheng, L., Shi, X., Li, Y., Guo, L., Liu, Z.: A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Res. 5, 199–212 (2012)

    Google Scholar 

  69. Yang, K., Zhang, S., Zhang, G., Sun, X., Lee, S., Liu, Z.: Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 10, 3318–3323 (2010)

    Google Scholar 

  70. Huang, P., Xu, C., Lin, J., Wang, C., Wang, X., Zhang, C., Zhou, X., Guo, S., Cui, D.: Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics. 1, 240 (2011)

    Google Scholar 

  71. Wate, P.S., Banerjee, S.S., Jalota-Badhwar, A., Mascarenhas, R.R., Zope, K.R., Khandare, J., Misra, R.: Cellular imaging using biocompatible dendrimer-functionalized graphene oxide-based fluorescent probe anchored with magnetic nanoparticles. Nanotechnology 23, 415101 (2012)

    Google Scholar 

  72. Fan, H., Wang, L., Zhao, K., Li, N., Shi, Z., Ge, Z., **, Z.: Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromol 11, 2345–2351 (2010)

    Google Scholar 

  73. Lu, B., Li, T., Zhao, H., Li, X., Gao, C., Zhang, S., **e, E.: Graphene-based composite materials beneficial to wound healing. Nanoscale 4, 2978 (2012)

    Google Scholar 

  74. Li, N., Zhang, Q., Gao, S., Song, Q., Huang, R., Wang, L., Liu, L., Dai, J., Tang, M., Cheng, G.: Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. Sci. Rep. 3, 604 (2013)

    Google Scholar 

  75. Yoon, H.J., Kim, T.H., Zhang, Z., Azizi, E., Pham, T.M., Paoletti, C., Lin, J., Ramnath, N., Wicha, M.S., Hayes, D.F.: Sensitive capture of circulating tumour cells by functionalized grapheme oxide nanosheets. Nat. Nanotech. 8, 735 (2013)

    Google Scholar 

  76. Li, C., Adamcik, J., Mezzenga, R.: Biodegradable nanocomposites of amyloid fibrils and graphene with shape memory and enzyme-sensing properties. Nat. Nanotech. 7, 421–427 (2012)

    Google Scholar 

Download references

Acknowledgements

None to declare

Funding

No funding organization is involved in the drafting of this manuscript.

Competing Interests

The authors declare no potential competing interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Kumar Sinha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sinha, R.K., Kanwal, N.K. (2023). Application of Graphene, Its Derivatives, and Their Nanocomposites. In: Patel, S.K., Taya, S.A., Das, S., Vasu Babu, K. (eds) Recent Advances in Graphene Nanophotonics. Advanced Structured Materials, vol 190. Springer, Cham. https://doi.org/10.1007/978-3-031-28942-2_18

Download citation

Publish with us

Policies and ethics

Navigation