The Quadratic Tree of a Two-Dimensional Regular Local Ring

  • Chapter
  • First Online:
Algebraic, Number Theoretic, and Topological Aspects of Ring Theory

Abstract

In this survey article, we discuss recent work describing the integrally closed rings between a two-dimensional regular local ring D and its quotient field F. A main emphasis is on those rings that can be obtained as an intersection of regular local rings between D and F.

Dedicated to the memory of Paul-Jean Cahen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.79
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An overring of D is understood to be a subring of F that contains D.

  2. 2.

    Zariski refers to these DVRs as “prime divisors of the second kind,” whereas the essential prime divisors of D are “prime divisors of the first kind.” Abhyankar refers to prime divisors dominating D as “hidden prime divisors” since these are prime divisors that come out on a blowup.

References

  1. S. S. Abhyankar, On the valuations centered in a local domain, Amer. J. Math., 78 (1956) 321-348.

    Article  MathSciNet  MATH  Google Scholar 

  2. P.-J. Cahen and J.-L. Chabert, Integer-valued polynomials. Amer. Math. Soc. Surveys and Monographs, vol. 48, Providence, 1997.

    Google Scholar 

  3. P.-J. Cahen and J.-L. Chabert, What you should know about integer-valued polynomials, Amer. Math. Monthly, 123 (2016), 311–337.

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Favre and M. Jonsson, The valuative tree, Springer-Verlag, 2004.

    Book  MATH  Google Scholar 

  5. A. Granja, Valuations determined by quadratic transforms of a regular ring, J. Algebra, 280 (2004), no. 2, 699–718.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Granja, The valuative tree of a two-dimensional regular local ring, Math. Res. Lett., (2007), no. 1, 17–34.

    Google Scholar 

  7. A. Granja, M. C. Martinez and C. Rodriguez, Valuations dominating regular local rings and proximity relations, J. Pure Appl. Algebra, 209 (2007), no. 2, 371–382.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Granja and C. Rodriguez, Proximity relations for real rank-one valuations dominating a local regular ring. Proceedings of the International Conference on Algebraic Geometry and Singularities (Sevilla, 2001). Rev. Mat. Iberoamericana 19 (2003), no. 2, 393–412.

    Google Scholar 

  9. L. Guerrieri, W. Heinzer, B. Olberding and M. Toeniskoetter, Directed Unions of Local Quadratic Transforms of Regular Local Rings and Pullbacks, in Rings, Polynomials, and Modules, Springer, 2017, 257–280.

    Google Scholar 

  10. W. Heinzer, On Krull overrings of a Noetherian domain, Proc. Amer. Math. Soc., 22 (1969), 217–222.

    Article  MathSciNet  MATH  Google Scholar 

  11. W. Heinzer, B. Johnston, D. Lantz, and K. Shah, Coefficient ideal in and blowups of a commutative Noetherian domain, J. Algebra, 162 (1993), 355–391.

    Article  MathSciNet  MATH  Google Scholar 

  12. W. Heinzer and K. A. Loper and B. Olberding, The tree of quadratic transforms of a regular local ring of dimension two, J. Algebra, 560 (2020), 383–415.

    Article  MathSciNet  MATH  Google Scholar 

  13. W. Heinzer, K. A. Loper, B. Olberding, H. Schoutens and M. Toeniskoetter, Ideal theory of infinite directed unions of local quadratic transforms, J. Algebra, 474 (2017), 213–239.

    Article  MathSciNet  MATH  Google Scholar 

  14. W. Heinzer and B. Olberding, Noetherian intersections of regular local rings of dimension two, J. Algebra, 559 (2020), 320–345.

    Article  MathSciNet  MATH  Google Scholar 

  15. W. Heinzer and B. Olberding, The ideal theory of intersections of prime divisors dominating a normal Noetherian local domain of dimension two. Rend. Sem. Mat. Univ. Padova, 144 (2020), 145–158.

    Article  MathSciNet  MATH  Google Scholar 

  16. W. Heinzer, B. Olberding and M. Toeniskoetter, Asymptotic properties of infinite directed unions of local quadratic transforms, J. Algebra, 479 (2017), 216–243.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc., 142 (1969), 43–60.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Hedstrom and E. Houston, Pseudo-valuation domains, Pacific J. Math., 75 (1978), 137–147.

    Article  MathSciNet  MATH  Google Scholar 

  19. W. Krull, Beitráge zur Arithmetik kommutativer Integritâtsbereiche II, Math. Zeit., 41 (1936), 665–679.

    Article  MATH  Google Scholar 

  20. J. Lipman, Rational singularities, with applications to algebraic surfaces and unique factorization, Publ. Math. Inst. Haute Etudes Sci., 36 (1969), 195-279.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Lipman, Desingularization of two-dimensional schemes, Ann. Math., 107 (1978),151–207.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Lipman, On complete ideals in regular local rings, Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata, (1986) 203-231.

    Google Scholar 

  23. K.A. Loper and F. Tartarone, A classification of the integrally closed rings of polynomials containing \({\mathbb {Z}}[X]\), J. Commut. Algebra, 1 (2009), 91–157.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Nagata, On Krull’s conjecture concerning valuation rings, Nagoya Math. J., 4 (1952), 29–33.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Nagata, Corrections to my paper “On Krull’s conjecture concerning valuation rings.”, Nagoya Math. J., 9 (1955), 209–212.

    Article  MathSciNet  MATH  Google Scholar 

  26. B. Olberding, Intersections of valuation overrings of two-dimensional Noetherian domains, in Commutative Algebra: Noetherian and non-Noetherian perspectives, Springer, 2010, 335–362.

    Google Scholar 

  27. B. Olberding, Affine schemes and topological closures in the Zariski-Riemann space of valuation rings, J. Pure Appl. Algebra, 219 (2015), 1720–1741.

    Article  MathSciNet  MATH  Google Scholar 

  28. B. Olberding and F. Tartarone, Integrally closed rings in birational extensions of two-dimensional regular local rings, Proc. Cambridge Phil. Soc., 155 (2013), 101–127.

    Article  MathSciNet  MATH  Google Scholar 

  29. P. Ribenboim, Sur une note de Nagata relative à un problème de Krull, Math. Z., 64 (1956), 159–168.

    Article  MathSciNet  MATH  Google Scholar 

  30. D. Shannon, Monoidal transforms of regular local rings, Amer. J. Math., 95 (1973), 294-320.

    Article  MathSciNet  MATH  Google Scholar 

  31. O. Zariski and P. Samuel, Commutative Algebra, Vol. 2, Van Nostrand, New York, 1960.

    Google Scholar 

Download references

Acknowledgements

We thank Dave Lantz for helpful comments on a previous draft of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce Olberding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Heinzer, W., Loper, K.A., Olberding, B., Toeniskoetter, M. (2023). The Quadratic Tree of a Two-Dimensional Regular Local Ring. In: Chabert, JL., Fontana, M., Frisch, S., Glaz, S., Johnson, K. (eds) Algebraic, Number Theoretic, and Topological Aspects of Ring Theory . Springer, Cham. https://doi.org/10.1007/978-3-031-28847-0_15

Download citation

Publish with us

Policies and ethics

Navigation