Nanotechnological Modus Operandi for the Delivery of Cytotoxic Phytochemicals

  • Chapter
  • First Online:
Bioprospecting of Tropical Medicinal Plants

Abstract

To treat various forms of cancer, a variety of pharmacological classes of drugs are available. Researchers are currently focusing their efforts on develo** medications at the nanoscale level in order to improve target specificity and promote cytotoxicity at lower drug concentrations to minimize associated adverse effects. Natural chemicals derived from medicinal plants are thought to be attractive candidates for anticancer medication development. Since the last several decades, medicinal plants are screened for their cytotoxic profile. Vinca alkaloids, camptothecin, podophyllotoxin, taxanes and anthracyclines are examples of strong anticancer drugs that have been extracted from plant sources. For improved cancer therapy and management, nanotechnology-driven customized pharmaceuticals and drug delivery systems are being developed and launched into the market with positive outcomes. Drug delivery to cancer cells can be improved by using nanoparticulate drug carriers, which can lengthen drug half-lives in the blood, reduce side effects in non-target organs and concentrate drugs at the target sites. This book chapter will discuss various nanotechnological approaches to deliver phytochemicals in a variety of cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Article  PubMed  Google Scholar 

  2. Nussbaumer S, Bonnabry P, Veuthey JL, Fleury-Souverain S (2011) Analysis of anticancer drugs: a review. Talanta 85(5):2265–2289

    Article  CAS  PubMed  Google Scholar 

  3. Amin A, Gali-Muhtasib H, Ocker M, Schneider-Stock R (2009) Overview of major classes of plant-derived anticancer drugs. Int J Biomed Sci 5(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Che E, Gao Y, Wan L, Zhang Y, Han N, Bai J, Li J, Sha Z, Wang S (2015) Paclitaxel/gelatin coated magnetic mesoporous silica nanoparticles: preparation and antitumor efficacy in vivo. Microporous Mesoporous Mater 204:226–234

    Article  CAS  Google Scholar 

  5. Singh A, Menéndez-Perdomo IM, Facchini PJ (2019) Benzylisoquinoline alkaloid biosynthesis in opium poppy: an update. Phytochem Rev 18(6):1457–1482

    Article  Google Scholar 

  6. Shah U, Shah R, Acharya S, Acharya N (2013) Novel anticancer agents from plant sources. Chin J Nat Med 11(1):16–23

    Article  Google Scholar 

  7. Cragg GM, Newman DJ (2005) Plants as a source of anti-cancer agents. J Ethnopharmacol 100(1–2):72–79

    Article  CAS  PubMed  Google Scholar 

  8. Son IH, Chung IM, Lee SI, Yang HD, Moon HI (2007) Pomiferin, histone deacetylase inhibitor isolated from the fruits of Maclura pomifera. Bioorganic Med Chem Lett 17(17):4753–4755

    Article  CAS  Google Scholar 

  9. Cornblatt BS, Ye L, Dinkova-Kostova AT, Erb M, Fahey JW, Singh NK, Chen MS, Stierer T, Garrett-Mayer E, Argani P, Davidson NE (2007) Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast. Carcinogenesis 28(7):1485–1490

    Article  CAS  PubMed  Google Scholar 

  10. Hadjzadeh M, Tavakol Afshari J, Ghorbani A, Shakeri MT (2006) The effects of aqueous extract of garlic (Allium sativum L.) on laryngeal cancer cells (Hep-2) and L929 cells in vitro. J Med Plants 5(18):41–48

    Google Scholar 

  11. Sadeghnia HR, Ghorbani Hesari T, Mortazavian SM, Mousavi SH, Tayarani-Najaran Z, Ghorbani A (2014) Viola tricolor induces apoptosis in cancer cells and exhibits antiangiogenic activity on chicken chorioallantoic membrane. Biomed Res Int 2014:625792

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sharifi-Rad J, Quispe C, Patra JK, Singh YD, Panda MK, Das G, Adetunji CO, Michael OS, Sytar O, Polito L, Živković J (2021) Paclitaxel: application in modern oncology and nanomedicine-based cancer therapy. Oxi Med Cell Longev 2021:3687700

    Google Scholar 

  13. Mousa SA, Bharali DJ (2011) Nanotechnology-based detection and targeted therapy in cancer: nano-bio paradigms and applications. Cancers 3(3):2888–2903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nie S, **ng Y, Kim GJ, Simons JW (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:257–288

    Article  CAS  PubMed  Google Scholar 

  15. Cho K, Wang XU, Nie S, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14(5):1310–1316

    Article  CAS  PubMed  Google Scholar 

  16. Nikitin MP, Zelepukin IV, Shipunova VO, Sokolov IL, Deyev SM, Nikitin PI (2020) Enhancement of the blood-circulation time and performance of nanomedicines via the forced clearance of erythrocytes. Nat Biomed Eng 4(7):717–731

    Article  CAS  PubMed  Google Scholar 

  17. Ahmed A, Sarwar S, Hu Y, Munir MU, Nisar MF, Ikram F, Asif A, Rahman SU, Chaudhry AA, Rehman IU (2021) Surface-modified polymeric nanoparticles for drug delivery to cancer cells. Expert Opin Drug Deliv 18(1):1–24

    Article  CAS  PubMed  Google Scholar 

  18. Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7(11):653–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ding Y, Xu Y, Yang W, Niu P, Li X, Chen Y, Li Z, Liu Y, An Y, Liu Y, Shen W (2020) Investigating the EPR effect of nanomedicines in human renal tumors via ex vivo perfusion strategy. Nano Today 35:100970

    Article  CAS  Google Scholar 

  20. Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, Wu S, Deng Y, Zhang J, Shao A (2020) Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci 7:193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ingale AG, Chaudhari AN (2013) Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach. J Nanomed Nanotechol 4(165):1–7

    Google Scholar 

  22. Chauhan RP, Gupta C, Prakash D (2012) Methodological advancements in green nanotechnology and their applications in biological synthesis of herbal nanoparticles. Int J Bioassays 01:6–10

    Google Scholar 

  23. Parveen K, Banse V, Ledwani L (2016) Green synthesis of nanoparticles: their advantages and disadvantages. In: AIP conference proceedings, vol 1724(1). AIP Publishing LLC, Melville, New York, United States. pp 020048

    Google Scholar 

  24. Kuang Y, Wang Q, Chen Z, Megharaj M, Naidu R (2013) Heterogeneous Fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles. J Colloid Interface Sci 410:67–73

    Article  CAS  PubMed  Google Scholar 

  25. Tripathi N, Pavelyev V, Islam SS (2017) Synthesis of carbon nanotubes using green plant extract as catalyst: unconventional concept and its realization. Appl Nanosci 7(8):557–566

    Article  CAS  Google Scholar 

  26. Alippilakkotte S, Kumar S, Sreejith L (2017) Fabrication of PLA/Ag nanofibers by green synthesis method using Momordica charantia fruit extract for wound dressing applications. Colloids Surf A Physicochem Eng Asp 529:771–782

    Article  CAS  Google Scholar 

  27. Frolov VA, Shnyrova AV, Zimmerberg J (2011) Lipid polymorphisms and membrane shape. Cold Spring Harb Perspect Biol 3(11):a004747

    Article  PubMed  PubMed Central  Google Scholar 

  28. Drummond DC, Meyer O, Hong K, Kirpotin DB, Papahadjopoulos D (1999) Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev 51(4):691–744

    CAS  PubMed  Google Scholar 

  29. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Part 1):6387–6392

    CAS  PubMed  Google Scholar 

  30. Oussoren C, Eling WM, Crommelin DJ, Storm G, Zuidema J (1998) The influence of the route of administration and liposome composition on the potential of liposomes to protect tissue against local toxicity of two antitumor drugs. Biochim Biophys Acta (BBA)-Biomembr 1369(1):159–172

    Article  CAS  Google Scholar 

  31. Sawant RR, Torchilin VP (2010) Liposomes as ‘smart’pharmaceutical nanocarriers. Soft Matter 6(17):4026–4044

    Article  CAS  Google Scholar 

  32. Feng T, Wei Y, Lee RJ, Zhao L (2017) Liposomal curcumin and its application in cancer. Int J Nanomedicine 12:6027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li PM, Li YL, Liu B, Wang WJ, Wang YZ, Li Z (2014) Curcumin inhibits MHCC97H liver cancer cells by activating ROS/TLR-4/caspase signaling pathway. Asian Pac J Cancer Prev 15(5):2329–2334

    Article  PubMed  Google Scholar 

  34. Zhou J, Zhao WY, Ma X, Ju RJ, Li XY, Li N, Sun MG, Shi JF, Zhang CX, Lu WL (2013) The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer. Biomaterials 34(14):3626–3638

    Article  CAS  PubMed  Google Scholar 

  35. Xu X, Wang L, Xu HQ, Huang XE, Qian YD, **ang J (2013) Clinical comparison between paclitaxel liposome (Lipusu®) and paclitaxel for treatment of patients with metastatic gastric cancer. Asian Pac J Cancer Prev 14(4):2591–2594

    Article  PubMed  Google Scholar 

  36. Surapaneni MS, Das SK, Das NG (2012) Designing Paclitaxel drug delivery systems aimed at improved patient outcomes: current status and challenges. Int Sch Res Notices 2012:1–15

    Google Scholar 

  37. Forssen EA, Coulter DM, Proffitt RT (1992) Selective in vivo localization of daunorubicin small unilamellar vesicles in solid tumors. Cancer Res 52(12):3255–3261

    CAS  PubMed  Google Scholar 

  38. Klein K, Kaspers GL (2013) A review of liposomal daunorubicin in the treatment of acute leukemia. Oncol Hematol Rev 9(2):142–148

    Google Scholar 

  39. Feldman EJ, Lancet JE, Kolitz JE, Ritchie EK, Roboz GJ, List AF, Allen SL, Asatiani E, Mayer LD, Swenson C, Louie AC (2011) First-in-man study of CPX-351: a liposomal carrier containing cytarabine and daunorubicin in a fixed 5: 1 molar ratio for the treatment of relapsed and refractory acute myeloid leukemia. J Clin Oncol 29(8):979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. O’Byrne KJ, Thomas AL, Sharma RA, DeCatris M, Shields F, Beare S, Steward WP (2002) A phase I dose-escalating study of DaunoXome, liposomal daunorubicin, in metastatic breast cancer. Br J Cancer 87(1):15–20

    Article  PubMed  PubMed Central  Google Scholar 

  41. Li XT, Ju RJ, Li XY, Zeng F, Shi JF, Liu L, Zhang CX, Sun MG, Lou JN, Lu WL (2014) Multifunctional targeting daunorubicin plus quinacrine liposomes, modified by wheat germ agglutinin and tamoxifen, for treating brain glioma and glioma stem cells. Oncotarget 5(15):6497

    Article  PubMed  PubMed Central  Google Scholar 

  42. Du R, Zhong T, Zhang WQ, Song P, Song WD, Zhao Y, Wang C, Tang YQ, Zhang X, Zhang Q (2014) Antitumor effect of iRGD-modified liposomes containing conjugated linoleic acid–paclitaxel (CLA-PTX) on B16-F10 melanoma. Int J Nanomedicine 9:3091

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hu L, Liang G, Yuliang W, Bing**g Z, **angdong Z, Rufu X (2013) Assessing the effectiveness and safety of liposomal paclitaxel in combination with cisplatin as first-line chemotherapy for patients with advanced NSCLC with regional lymph-node metastasis: study protocol for a randomized controlled trial (PLC-GC trial). Trials 14(1):1–7

    Article  Google Scholar 

  44. Ibrahim KS (2013) Carbon nanotubes-properties and applications: a review. Carbon Lett 14(3):131–144

    Article  Google Scholar 

  45. Patel J, Parikh S, Patel S, Patel R, Patel P (2021) Carbon nanotube (CNTs): structure, synthesis, purification, functionalisation, pharmacology, toxicology, biodegradation and application as nanomedicine and biosensor: carbon nanotube (CNTs). J Pharm Sci Med Res 1(02):017–044

    Google Scholar 

  46. Vardharajula S, Ali SZ, Tiwari PM, Eroğlu E, Vig K, Dennis VA, Singh SR (2012) Functionalized carbon nanotubes: biomedical applications. Int J Nanomedicine 7:5361–5374

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Thakur A, Bharti R, Sharma R (2021) Carbon nanotubes: types, synthesis, cytotoxicity and applications in biomedical. Mater Today Proceed 50:2256–2268

    Article  Google Scholar 

  48. Rahamathulla M, Bhosale RR, Osmani RAM, Mahima KC, Johnson AP, Hani U, Ghazwani M, Begum MY, Alshehri S, Ghoneim MM, Shakeel F, Gangadharappa HV (2021) Carbon nanotubes: current perspectives on diverse applications in targeted drug delivery and therapies. Materials (Basel) 14(21):6707

    Article  CAS  PubMed  Google Scholar 

  49. Son KH, Hong JH, Lee JW (2016) Carbon nanotubes as cancer therapeutic carriers and mediators. Int J Nanomedicine 11:5163–5185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rashid MH, Ralph SF (2017) Carbon nanotube membranes: synthesis, properties, and future filtration applications. Nanomaterials (Basel) 7(5):99

    Article  PubMed  Google Scholar 

  51. Varghese R, Salvi S, Sood P, Karsiya J, Kumar D (2022) Carbon nanotubes in COVID-19: a critical review and prospects. Colloid Interface Sci Commun 46:100544

    Article  CAS  PubMed  Google Scholar 

  52. Kushwaha SK, Ghoshal S, Rai AK, Singh S (2013) Carbon nanotubes as a novel drug delivery system for anticancer therapy: a review. Braz J Pharm Sci 49(4):629–643

    Article  CAS  Google Scholar 

  53. Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X, Dai H (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68(16):6652–6660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li H, Zhang N, Hao Y, Wang Y, Jia S, Zhang H (2019) Enhancement of curcumin antitumor efficacy and further photothermal ablation of tumor growth by single-walled carbon nanotubes delivery system in vivo. Drug Deliv 26(1):1017–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ali A, Shah T, Ullah R, Zhou P, Guo M, Ovais M, Tan Z, Rui Y (2021) Review on recent progress in magnetic nanoparticles: synthesis, characterization, and diverse applications. Front Chem 9:629054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu Y, Guo Z, Li F, **ao Y, Zhang Y, Bu T, Jia P, Zhe T, Wang L (2019) Multifunctional magnetic copper ferrite nanoparticles as fenton-like reaction and near-infrared photothermal agents for synergetic antibacterial therapy. ACS Appl Mater Interfaces 11(35):31649–31660

    Article  CAS  PubMed  Google Scholar 

  57. Chmykhalo V, Belanova A, Belousova M, Butova V, Makarenko Y, Khrenkova V, Soldatov A, Zolotukhin P (2021) Microbial-based magnetic nanoparticles production: a mini-review. Integr Biol (Camb) 13(4):98–107

    Article  PubMed  Google Scholar 

  58. Malar GCG, Seenuvasan M, Kumar KS, Kumar MA (2021) Instrumental methods in surface property analysis of magnetic nanoparticles. In: Kumar RP, Bharathiraja B (eds) Nanomaterials. Academic Press, Cambridge, Massachusetts, United States, pp 691–697

    Google Scholar 

  59. Alonso J, Barandiarán JM, Fernández Barquín L, García-Arribas A (2018) Magnetic nanoparticles, synthesis, properties, and applications. In: El-Gendy AA, Barandiarán JM, Hadimani RL (eds) Micro and nano technologies, magnetic nanostructured materials. Elsevier, pp 1–40

    Google Scholar 

  60. Li X, Li W, Wang M, Liao Z (2021) Magnetic nanoparticles for cancer theranostics: advances and prospects. J Control Release 335:437–448

    Article  CAS  PubMed  Google Scholar 

  61. Iler KR (1979) The chemistry of silica. Solubility, polymerization, colloid and surface properties and biochemistry of silica. Wiley, Chichester

    Google Scholar 

  62. Do Kim K, Kim SS, Choa YH, Kim HT (2007) Formation and surface modification of Fe3O4 nanoparticles by co-precipitation and sol-gel method. J Ind Eng Chem 13(7):1137–1141

    CAS  Google Scholar 

  63. Jafarzadeh M, Soleimani E, Sepahvand H, Adnan R (2015) Synthesis and characterization of fluconazole-functionalized magnetic nanoparticles as a catalyst for the synthesis of 3-aryl and 3-amino-imidazo [1, 2-a] pyridines. RSC Adv 5(53):42744–42753

    Article  CAS  Google Scholar 

  64. Oliveira RR, Carrião MS, Pacheco MT, Branquinho LC, de Souza ALR, Bakuzis AF, Lima EM (2018) Triggered release of paclitaxel from magnetic solid lipid nanoparticles by magnetic hyperthermia. Mater Sci Eng C Mater Biol Appl 92:547–553

    Article  CAS  PubMed  Google Scholar 

  65. Altenschmidt L, Sánchez-Paradinas S, Lübkemann F, Zámbó D, Abdelmonem AM, Bradtmüller H, Masood A, Morales I, de la Presa P, Knebel A, García-Tuñón MAG, Pelaz B, Hindricks KDJ, Behrens P, Parak WJ, Bigall NC (2021) Aerogelation of polymer-coated photoluminescent, plasmonic, and magnetic nanoparticles for biosensing applications. ACS Appl Nano Mater 4(7):6678–6688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Talluri S, Malla RR (2019) Superparamagnetic iron oxide nanoparticles (SPIONs) for diagnosis and treatment of breast, ovarian and cervical cancers. Curr Drug Metab 20(12):942–945

    Article  CAS  PubMed  Google Scholar 

  67. Hou H, Wang C, Nan K, Freeman WR, Sailor MJ, Cheng L (2016) Controlled release of dexamethasone from an intravitreal delivery system using porous silicon dioxide. Invest Ophthalmol Vis Sci 57(2):557–566. https://doi.org/10.1167/iovs.15-18559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Diksha RI (2012) Synthesis, surface modification, characterization, and biomedical in vitro applications of organically modified silica (ORMOSIL) nanoparticles. Methods Mol Biol 906:365–379

    Article  CAS  PubMed  Google Scholar 

  69. Zhang M, Qiao J, Qi L (2018) Dual-functional polymer-modified magnetic nanoparticles for isolation of lysozyme. Anal Chim Acta 1035:70–76

    Article  CAS  PubMed  Google Scholar 

  70. Tousi MS, Sepehri H, Khoee S, Farimani MM, Delphi L, Mansourizadeh F (2021) Evaluation of apoptotic effects of mPEG-b-PLGA coated iron oxide nanoparticles as a eupatorin carrier on DU-145 and LNCaP human prostate cancer cell lines. J Pharm Anal 11(1):108–121

    Article  PubMed  Google Scholar 

  71. Montazerabadi A, Beik J, Irajirad R, Attaran N, Khaledi S, Ghaznavi H, Shakeri-Zadeh A (2019) Folate-modified and curcumin-loaded dendritic magnetite nanocarriers for the targeted thermo-chemotherapy of cancer cells. Artif Cells Nanomed Biotechnol 47(1):330–340

    Article  CAS  PubMed  Google Scholar 

  72. Beik J, Abed Z, Ghoreishi FS, Hosseini-Nami S, Mehrzadi S, Shakeri-Zadeh A, Kamrava SK (2016) Nanotechnology in hyperthermia cancer therapy: from fundamental principles to advanced applications. J Control Release 235:205–221

    Article  CAS  PubMed  Google Scholar 

  73. Lu Y, Park K (2013) Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm 453(1):198–214

    Article  CAS  PubMed  Google Scholar 

  74. Qiu JF, Gao X, Wang BL, Wei XW, Gou ML, Men K, Liu XY, Guo G, Qian ZY, Huang MJ (2013) Preparation and characterization of monomethoxy poly (ethylene glycol)-poly (ε-caprolactone) micelles for the solubilization and in vivo delivery of luteolin. Int J Nanomedicine 8:3061

    PubMed  PubMed Central  Google Scholar 

  75. Dong P, Wang X, Gu Y, Wang Y, Wang Y, Gong C, Luo F, Guo G, Zhao X, Wei Y, Qian Z (2010) Self-assembled biodegradable micelles based on star-shaped PCL-b-PEG copolymers for chemotherapeutic drug delivery. Colloids Surf A Physicochem Eng Asp 358(1–3):128–134

    Article  CAS  Google Scholar 

  76. Wei X, Gong C, Shi S, Fu S, Men K, Zeng S, Zheng X, Gou M, Chen L, Qiu L, Qian Z (2009) Self-assembled honokiol-loaded micelles based on poly (ɛ-caprolactone)-poly (ethylene glycol)-poly (ɛ-caprolactone) copolymer. Int J Pharma 369(1–2):170–175

    Article  CAS  Google Scholar 

  77. Guo X, Zhao Z, Chen D, Qiao M, Wan F, Cun D, Sun Y, Yang M (2019) Co-delivery of resveratrol and docetaxel via polymeric micelles to improve the treatment of drug-resistant tumors. Asian J Pharm Sci 14(1):78–85

    Article  PubMed  Google Scholar 

  78. Abdel-Rahman MA, Al-Abd AM (2013) Thermoresponsive dendrimers based on oligoethylene glycols: design, synthesis and cytotoxic activity against MCF-7 breast cancer cells. Eur J Med Chem 69:848–854

    Article  CAS  PubMed  Google Scholar 

  79. Malar CG (2015) Dendrosomal capsaicin nanoformulation for the invitro anticancer effect on HEp 2 and MCF-7 cell lines. Int J Appl Bioeng 9(2)

    Google Scholar 

  80. Sharma A, Gautam SP, Gupta AK (2011) Surface modified dendrimers: synthesis and characterization for cancer targeted drug delivery. Bioorg Med Chem 19(11):3341–3346

    Article  CAS  PubMed  Google Scholar 

  81. Cheng Y, Li M, Xu T (2008) Potential of poly (amidoamine) dendrimers as drug carriers of camptothecin based on encapsulation studies. Eur J Med Chem 43(8):1791–1795

    Article  CAS  PubMed  Google Scholar 

  82. He H, Li Y, Jia XR, Du J, Ying X, Lu WL, Lou JN, Wei Y (2011) PEGylated Poly (amidoamine) dendrimer-based dual-targeting carrier for treating brain tumors. Biomaterials 32(2):478–487

    Article  CAS  PubMed  Google Scholar 

  83. Pla D, Martí M, Farrera-Sinfreu J, Pulido D, Francesch A, Calvo P, Cuevas C, Royo M, Aligué R, Albericio F, Alvarez M (2009) Lamellarin D bioconjugates II: synthesis and cellular internalization of dendrimer and nuclear location signal derivatives. Bioconjug Chem 20(6):1112–1121

    Article  CAS  PubMed  Google Scholar 

  84. Abderrezak A, Bourassa P, Mandeville JS, Sedaghat-Herati R, Tajmir-Riahi HA (2012) Dendrimers bind antioxidant polyphenols and cisplatin drug. PLoS One 7(3):e33102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yue Y, Eun JS, Lee MK, Seo SY (2012) Synthesis and characterization of G5 PAMAM dendrimer containing daunorubicin for targeting cancer cells. Arch Pharm Res 35(2):343–349

    Article  CAS  PubMed  Google Scholar 

  86. Raja KS, Balambika R, Dolai S, Shi W (2009) The concept of a green drug, curcumin and it’s derivatives as a model system. Mini Rev Org Chem 6(2):152–158

    Article  CAS  Google Scholar 

  87. Mukherjee S, Ray S, Thakur RS (2009) Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci 71(4):349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wei T, Chen C, Liu J, Liu C, Posocco P, Liu X, Cheng Q, Huo S, Liang Z, Fermeglia M, Pricl S (2015) Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance. Proc Natl Acad Sci 112(10):2978–2983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Serpe L, Catalano MG, Cavalli R, Ugazio E, Bosco O, Canaparo R, Muntoni E, Frairia R, Gasco MR, Eandi M, Zara GP (2004) Cytotoxicity of anticancer drugs incorporated in solid lipid nanoparticles on HT-29 colorectal cancer cell line. Eur J Pharm Biopharm 58(3):673–680

    Article  CAS  PubMed  Google Scholar 

  90. Shen H, Shi S, Zhang Z, Gong T, Sun X (2015) Coating solid lipid nanoparticles with hyaluronic acid enhances antitumor activity against melanoma stem-like cells. Theranostics 5(7):755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bang C, Thum T (2012) Exosomes: new players in cell–cell communication. Int J Biochem Cell Biol 44(11):2060–2064

    Article  CAS  PubMed  Google Scholar 

  92. Agrawal AK, Aqil F, Jeyabalan J, Spencer WA, Beck J, Gachuki BW, Alhakeem SS, Oben K, Munagala R, Bondada S, Gupta RC (2017) Milk-derived exosomes for oral delivery of paclitaxel. Nanomedicine 13(5):1627–1636

    Article  CAS  PubMed  Google Scholar 

  93. Salarpour S, Forootanfar H, Pournamdari M, Ahmadi-Zeidabadi M, Esmaeeli M, Pardakhty A (2019) Paclitaxel incorporated exosomes derived from glioblastoma cells: comparative study of two loading techniques. DARU J Pharm Sci 27(2):533–539

    Article  CAS  Google Scholar 

  94. Zhuang X, **ang X, Grizzle W, Sun D, Zhang S, Axtell RC, Ju S, Mu J, Zhang L, Steinman L, Miller D (2011) Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther 19(10):1769–1779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Osterman CJ, Lynch JC, Leaf P, Gonda A, Ferguson Bennit HR, Griffiths D, Wall NR (2015) Curcumin modulates pancreatic adenocarcinoma cell-derived exosomal function. PLoS One 10(7):e0132845

    Article  PubMed  PubMed Central  Google Scholar 

  96. Wei H, Chen J, Wang S, Fu F, Zhu X, Wu C, Liu Z, Zhong G, Lin J (2019) A nanodrug consisting of doxorubicin and exosome derived from mesenchymal stem cells for osteosarcoma treatment in vitro. Int J Nanomedicine 14:8603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lin FZ, Wang SC, Hsi YT, Lo YS, Lin CC, Chuang YC, Lin SH, Hsieh MJ, Chen MK (2019) Celastrol induces vincristine multidrug resistance oral cancer cell apoptosis by targeting JNK1/2 signaling pathway. Phytomedicine 54:1–8

    Article  CAS  PubMed  Google Scholar 

  98. Aqil F, Kausar H, Agrawal AK, Jeyabalan J, Kyakulaga AH, Munagala R, Gupta R (2016) Exosomal formulation enhances therapeutic response of celastrol against lung cancer. Exp Mol Pathol 101(1):12–21

    Article  CAS  PubMed  Google Scholar 

  99. Hannafon BN, Carpenter KJ, Berry WL, Janknecht R, Dooley WC, Ding WQ (2015) Exosome-mediated microRNA signaling from breast cancer cells is altered by the anti-angiogenesis agent docosahexaenoic acid (DHA). Mol Cancer 14(1):1–3

    Article  CAS  Google Scholar 

  100. Schaffazick SR, Guterres SS, Freitas LD, Pohlmann AR (2003) Caracterização e estabilidade físico-química de sistemas poliméricos nanoparticulados para administração de fármacos. Química nova 26:726–737

    Article  CAS  Google Scholar 

  101. Brewer E, Coleman J, Lowman A (2011) Emerging technologies of polymeric nanoparticles in cancer drug delivery. J Nanomater 2011:1–10

    Google Scholar 

  102. Bisht S, Feldmann G, Soni S, Ravi R, Karikar C, Maitra A, Maitra A (2007) Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): a novel strategy for human cancer therapy. J Nanobiotech 5(1):1–8

    Article  Google Scholar 

  103. Khanna V, Kalscheuer S, Kirtane A, Zhang W, Panyam J (2019) Perlecan-targeted nanoparticles for drug delivery to triple-negative breast cancer. Future Drug Discov 1(1):FDD8

    Article  PubMed  PubMed Central  Google Scholar 

  104. Shafiei-Irannejad V, Samadi N, Salehi R, Yousefi B, Rahimi M, Akbarzadeh A, Zarghami N (2018) Reversion of multidrug resistance by co-encapsulation of doxorubicin and metformin in poly (lactide-co-glycolide)-d-α-tocopheryl polyethylene glycol 1000 succinate nanoparticles. Pharma Res 35(6):1–3

    Article  CAS  Google Scholar 

  105. Yuan JD, ZhuGe DL, Tong MQ, Lin MT, Xu XF, Tang X, Zhao YZ, Xu HL (2018) pH-sensitive polymeric nanoparticles of mPEG-PLGA-PGlu with hybrid core for simultaneous encapsulation of curcumin and doxorubicin to kill the heterogeneous tumour cells in breast cancer. Artif Cells Nanomed Biotechnol 46(sup1):302–313

    Article  CAS  PubMed  Google Scholar 

  106. ** M, ** G, Kang L, Chen L, Gao Z, Huang W (2018) Smart polymeric nanoparticles with pH-responsive and PEG-detachable properties for co-delivering paclitaxel and survivin siRNA to enhance antitumor outcomes. Int J Nano 13:2405

    Article  CAS  Google Scholar 

  107. Çırpanlı Y, Allard E, Passirani C, Bilensoy E, Lemaire L, Çalış S, Benoit JP (2011) Antitumoral activity of camptothecin-loaded nanoparticles in 9L rat glioma model. Int J Pharma 403(1–2):201–206

    Article  Google Scholar 

  108. Soma CE, Dubernet C, Bentolila D, Benita S, Couvreur P (2000) Reversion of multidrug resistance by co-encapsulation of doxorubicin and cyclosporin A in polyalkylcyanoacrylate nanoparticles. Biomaterials 21(1):1–7

    Article  CAS  PubMed  Google Scholar 

  109. Zhao Y, Cai C, Liu M, Zhao Y, Pei W, Chu X, Zhang H, Wang Z, Han J (2019) An organic solvent-free technology for the fabrication of albumin-based paclitaxel nanoparticles for effective cancer therapy. Colloids Surf B: Biointerfaces 183:110394

    Article  CAS  PubMed  Google Scholar 

  110. Yu Y, Kong L, Li L, Li N, Yan P (2015) Antitumor activity of doxorubicin-loaded carbon nanotubes incorporated poly (lactic-co-glycolic acid) electrospun composite nanofibers. Nanoscale Res Lett 10(1):1–9

    Article  Google Scholar 

  111. Soukasene S, Toft DJ, Moyer TJ, Lu H, Lee HK, Standley SM, Cryns VL, Stupp SI (2011) Antitumor activity of peptide amphiphile nanofiber-encapsulated camptothecin. ACS Nano 5(11):9113–9121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Baig MM, Lai WF, Ashraf S, Saleem A, Akhtar MF, Mikrani R, Naveed M, Siddique F, Taleb A, Mudassir J, Khan GJ (2020) The integrin facilitated internalization of fibronectin-functionalized camptothecin-loaded DNA-nanofibers for high-efficiency anticancer effects. Drug Deliv Transl Res 10(5):1381–1392

    Article  CAS  PubMed  Google Scholar 

  113. Vashisth P, Singh RP, Pruthi V (2016) A controlled release system for quercetin from biodegradable poly (lactide-co-glycolide)–polycaprolactone nanofibers and its in vitro antitumor activity. J Bioact Compat Polym 31(3):260–272

    Article  CAS  Google Scholar 

  114. Arbade GK, Kumar V, Tripathi V, Menon A, Bose S, Patro TU (2019) Emblica officinalis-loaded poly (ε-caprolactone) electrospun nanofiber scaffold as potential antibacterial and anticancer deployable patch. New J Chem 43(19):7427–7440

    Article  CAS  Google Scholar 

  115. Amna T, Barakat NA, Hassan MS, Khil MS, Kim HY (2013) Camptothecin loaded poly (ε-caprolactone) nanofibers via one-step electrospinning and their cytotoxicity impact. Colloids Surf A Physicochem Eng Asp 431:1–8

    Article  CAS  Google Scholar 

  116. Zhou Z, Piao Y, Hao L, Wang G, Zhou Z, Shen Y (2019) Acidity-responsive shell-sheddable camptothecin-based nanofibers for carrier-free cancer drug delivery. Nanoscale 11(34):15907–15916

    Article  CAS  PubMed  Google Scholar 

  117. Sedghi R, Shaabani A, Mohammadi Z, Samadi FY, Isaei E (2017) Biocompatible electrospinning chitosan nanofibers: a novel delivery system with superior local cancer therapy. Carbohydr Polym 159:1

    Article  CAS  PubMed  Google Scholar 

  118. Wen P, Hu TG, Li L, Zong MH, Wu H (2018) A colon-specific delivery system for quercetin with enhanced cancer prevention based on co-axial electrospinning. Food Funct 9(11):5999–6009

    Article  CAS  PubMed  Google Scholar 

  119. Eskitoros-Togay ŞM, Bulbul YE, Dilsiz N (2018) Quercetin-loaded and unloaded electrospun membranes: synthesis, characterization and in vitro release study. J Drug Deliv Sci Technol 47:22–30

    Article  CAS  Google Scholar 

  120. Stoyanova N, Spasova M, Manolova N, Rashkov I, Georgieva A, Toshkova R (2020) Antioxidant and antitumor activities of novel quercetin-loaded electrospun cellulose acetate/polyethylene glycol fibrous materials. Antioxidants 9(3):232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Vieira DB, Gamarra LF (2016) Advances in the use of nanocarriers for cancer diagnosis and treatment. Einstein (Sao Paulo) 14:99–103

    Article  PubMed  Google Scholar 

  122. ClinicalTrials.gov. https://clinicaltrials.gov/. Accessed 03 Feb 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasmin Sultana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alex, T., Shrivastava, A., Lang, D.K., Khabiya, R., Koka, S.S., Sultana, Y. (2023). Nanotechnological Modus Operandi for the Delivery of Cytotoxic Phytochemicals. In: Arunachalam, K., Yang, X., Puthanpura Sasidharan, S. (eds) Bioprospecting of Tropical Medicinal Plants. Springer, Cham. https://doi.org/10.1007/978-3-031-28780-0_57

Download citation

Publish with us

Policies and ethics

Navigation