Numerical Simulation and Optimization of a Locally Built Midibus Structure in Quasi-static and Rollover Condition

  • Conference paper
  • First Online:
Artificial Intelligence and Digitalization for Sustainable Development (ICAST 2022)

Abstract

Rollover crashworthiness concerns the ability of a vehicle’s structural system and components to absorb energies with complete protection of occupants in dynamic (rollover) crash scenarios. First, this study aims to analyze a locally built midibus structure in rollover crashes using numerical investigation (LS-DYNA) as stated by United Nations Regulation 66 (UNECE R66). Also, this study considered the quasi-static simulation to determine the energy absorbing and load-deformation behavior of the midibus frame sections. Then, the two alternatives in design optimization were presented via reinforcement design and numerical optimization (Successive Response Surface Method in LS-OPT) to improve the strength and weight of the midibus structure. As a rollover simulation result, the maximum deformation of the baseline structure occurred at pillar A and three bays. As a result, the baseline midibus structure failed the standard requirement and has unacceptable strength in both quasi-static and rollover simulation. Moreover, related to the baseline model, the structure’s weight of the reinforced Model was effectively reduced by 5.2%. However, an optimized model (using the Successive Response Surface Method) has reduced the weight of the reinforced model by 5.6%. Lastly, the Energy Absorption and Specific Energy Absorption of the baseline and the two alternative models were evaluated and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Addisu, H.S., Koricho, E.G.: Structural weight and stiffness optimization of a midibus using the reinforcement and response surface optimization (RSO) method in static condition. Model. Simul. Eng. 2022, 1–15 (2022)

    Article  Google Scholar 

  2. Bai, J., Meng, G., Zuo, W.: Rollover crashworthiness analysis and optimization of bus frame for conceptual design. J. Mech. Sci. Technol. 33(7), 3363–3373 (2019)

    Article  Google Scholar 

  3. Bin Yusof, M., Amirul, M., Bin, A.: Effect of mass on bus superstructure strength having rollover crash. Int. Sci. Index 6(8), 1443–1449 (2012)

    Google Scholar 

  4. Karliński, J., Ptak, M., Działak, P., Rusiński, E.: Strength analysis of bus superstructure according to Regulation No. 66 of UN/ECE. Arch. Civil Mech. Eng. 14(3), 342–353 (2013)

    Article  Google Scholar 

  5. Tulu, G.S., Washington, S., King, M.J.: Characteristics of police-reported road traffic crashes in ethiopia over a six year period. In: Proceedings of the 2013 Australasian Road Safety Research, pp. 1–13 (2013)

    Google Scholar 

  6. UNECE 2004: Statistics about rollover accident of buses – VI. Hungary (2004)

    Google Scholar 

  7. UNECE 2020: Road Safety Performance Review – Ethiopia. United Nations Economic Commission for Africa & Europe, Geneva (2020)

    Google Scholar 

  8. Tech, T.W., Iturrioz, I., De Meira Júnior, A.D.: Numerical simulation of bus rollover. SAE Tech. Pap. (2007)

    Google Scholar 

  9. Iozsa, M. D., Micu, D. A. N. A., Frățilă, G.: Influence of crash box on automotive crashworthiness. Recent Adv. Civ. Eng. Mech. 20, 49–54 (2014)

    Google Scholar 

  10. Series, N.A.S.I., Base, N.: Crashworthiness of Transportation Systems: Structural Impact and Occupant Protection (1997)

    Google Scholar 

  11. Cezary, B. Jerry, W., Leslaw, K., Jerzy, K.: Florida standard for crashworthiness and safety evaluation of paratransit buses. Transit Off. Florida Dep. Transp. 1–14 (2009)

    Google Scholar 

  12. Micu, D.A., Iozsa, D., Stan, C.: Quasi-static simulation approaches on rollover impact of a bus structure. In: WSEAS, ACMOS, pp. 81–86 (2014)

    Google Scholar 

  13. Nurhadi, I., Zain, R.: Development of computer based procedure for quantitative evaluation of bus superstructure in type approval. J. KONES 17(2), 371–378 (2010)

    Google Scholar 

  14. Mohd Nor, M.K., Dol Baharin, M.Z.: Rollover analysis of heavy vehicle bus. Appl. Mech. Mater. 660, 633–636 (2014)

    Google Scholar 

  15. Na, J., Wang, T., Xu, Z.: Research on a one-step fast simulation algorithm for bus rollover collision based on total strain theory. Int. J. Crashworthiness 19(3), 275–287 (2014)

    Article  Google Scholar 

  16. Mahajan, R.S., Daphal, P.N., Athavale, S.M.: Study and analysis of rollover resistance of bus body structure by non-linear FEM technique and experimental method. In: SAE Tech. Pap., pp. 205–209 (2003)

    Google Scholar 

  17. Zhou, W., Kuznectov, A., Wu, C.Q., Telichev, I.: A comparative numerical study of motorcoach rollover resistance under ECE R66 and proposed NHTSA regulation conditions. Int. J. Crashworthiness 25(2), 1–16 (2019)

    Google Scholar 

  18. Phadatare, V.D.: Performance improvement of bus structure for rollover analysis using FEA and validation of roll bar. IOSR J. Mech. Civ. Eng. 17(10), 16–19 (2017)

    Article  Google Scholar 

  19. Thosare, A., Patil, S.B.: Rollover analysis of bus body to meet ais-052 regulations and optimization of the body. Int. Eng. Res. J. 3, 96-102 (2017)

    Google Scholar 

  20. Rogov, P.S., Orlov, L.N.: Verification of computer simulation results of bus body section rollover. J. Traffic Transp. Eng. 3(2), 118–127 (2015)

    Google Scholar 

  21. Yang, L., Deng, S.: Structural local analysis and optimization of bus body skeleton. In: 5th International Conference Civil Engineering Transportation no. ICCET, pp. 1975–1979 (2015)

    Google Scholar 

  22. Korta, J., Uhl, T.: Multi-material design optimization of a bus body structure. J. KONES. Powertrain Transp. 20(1), 139–146 (2013)

    Article  Google Scholar 

  23. Reyes-ruiz, C., Cervantes, O.R., Prado, A.O., Ramirez, E.: Analysis and optimization of a passenger bus frame through finite element software. In: 2013 SIMULIA Community Conference (2013)

    Google Scholar 

  24. Bin Yusof, M., Bin Afripin, M.A.A.: Effect of beam profile size on bus superstructure strength having rollover crash. Appl. Mech. Mater. 372, 620–629 (2013)

    Article  Google Scholar 

  25. Hu, H., Yang, C.L., Wang, J.: Development and validation of finite element model for the welded structure of transit bus. Int. J. Heavy Veh. Syst. 19(4), 371–388 (2012)

    Article  Google Scholar 

  26. Li, Y., Lan, F., Chen, J.: Experimental and numerical study of rollover crashworthiness of a coach body section. SAE Int., vol. 8 (2012)

    Google Scholar 

  27. Su, R., Gui, L., Fan, Z.: Multi-objective optimization for bus body with strength and rollover safety constraints based on surrogate models. Struct. Multidiscip. Optim. 44(3), 431–441 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bojanowski, C., Kulak, R.F.: Multi-objective optimisation and sensitivity analysis of a paratransit bus structure for rollover and side impact tests. Int. J. Crashworthiness 16(6), 665–673 (2011)

    Article  Google Scholar 

  29. Tech, T.W., Iturrioz, I.: Structural optimization of a bus in rollover conditions. SAE Tech. Pap. (2009)

    Google Scholar 

  30. Matolcsy, M.: The severity of bus rollover accidents. Crashworthiness Transp. Syst. 07 (1997)

    Google Scholar 

  31. Friedman, K., Hutchinson, J., Weerth, E., Mihora, D.: Implementation of composite roof structures in transit buses to increase rollover roof strength and reduce the likelihood of rollover. Int. J. Crashworthiness 11(6), 593–596 (2006)

    Article  Google Scholar 

  32. Lin, Y.C., Nian, H.C.: Structural design optimization of the body section using the finite element method. SAE Tech. Pap. (2006)

    Google Scholar 

  33. Lan, F., Chen, J., Lin, J.: Comparative analysis for bus side structures and lightweight optimization. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 218(10), 1067–1075 (2004)

    Google Scholar 

  34. Liang, C.C., Le, G.N.: Bus rollover crashworthiness under European standard: An optimal analysis of superstructure strength using successive response surface method. Int. J. Crashworthiness 14(6), 623–639 (2009)

    Article  Google Scholar 

  35. Rahman, M.K.: Body section analysis in bus rollover simulation. J. East. Asia Soc. Transp. Stud. 9, 1967–1981 (2011)

    Google Scholar 

  36. Park, S.J., Yoo, W.S., Kwon, Y.J.: Rollover analysis of a bus using beam and nonlinear spring elements. WSEAS Trans. Math. 5(5), 526–531 (2006)

    Google Scholar 

  37. Liang, C.C., Nam, L.G.: Comparative analysis of bus rollover protection under existing standards. WIT Trans. Built Environ. 113, 41–53 (2010)

    Article  Google Scholar 

  38. Subic, A., He, J.: Improving bus rollover design through modal analysis. Int. J. Crashworthiness 2(2), 139–152 (1997)

    Article  Google Scholar 

  39. Bojanowski, C., Gepner, B., Kwasniewski, L., Rawl, C., Wekezer, J.: Roof Crush Resistance and Rollover Strength of a Paratransit Bus. In: 8th European LS-DYNA® Users Conference, vol. 66, no. May 2011, pp. 1–13 (2011)

    Google Scholar 

  40. Valladares, D., Miralbes, R., Castejon, L.: Development of a numerical technique for bus rollover test simulation by the F.E.M. In: WCE 2010 - World Congress on Engineering 2010, vol. 2, pp. 1361–1365 (2010)

    Google Scholar 

  41. Liu, Y.: ANSYS and LS-DYNA used for structural analysis. Int. J. Comput. Aided Eng. Technol. 1(1), 31–44 (2008)

    Article  Google Scholar 

  42. Gepner, B.D.: Rollover Procedures for Crashworthiness Assessment of Paratransit Bus Structures. Florida State University (2014)

    Google Scholar 

  43. UNECE R66: Uniform technical prescriptions concerning the approval of large passenger vehicles with regard to the strength of their superstructure. Geneva (2006)

    Google Scholar 

  44. Schweizerhof, K., Walz, M., Rust, W.J.H., Franz, U.: Quasi-static analyses using explicit time integration - applications of LS-DYNA. In: 2nd Eur. LS-DYNA Conference, no. May 2018, pp. 1–18 (1999)

    Google Scholar 

  45. Gertsch, J., Shim, T.: Interpretation of roll plane stability models. Int. J. Veh. Des. 46(1), 72–93 (2008)

    Article  Google Scholar 

  46. Bojanowski, C.: Verification , Validation and Optimization of Finite Element Model of Bus Structure for Rollover Test. Florida State University (2009)

    Google Scholar 

  47. Kwa, L., Wekezer, J.W., Gepner, B., Siervogel, J.: Development of simplified safety assessment procedure for paratransit buses. Comput. Methods Mech., no. 028818 (2011)

    Google Scholar 

  48. Wekezer, J.W., Cichocki, K.: Structural response of paratransit buses in rollover accidents. Int. J. Crashworthiness 12(3), 217–225 (2007)

    Article  Google Scholar 

  49. Guler, M.A., Elitok, K., Bayram, B., Stelzmann, U.: The influence of seat structure and passenger weight on the rollover crashworthiness of an intercity coach. Int. J. Crashworthiness 12(6), 567–580 (2007)

    Article  Google Scholar 

  50. Boria, S.: Lightweight Design and Crash Analysis of Composites. Elsevier Ltd. (2016)

    Google Scholar 

  51. Wicaksono, S., Rizka Faisal Rahman, M., Mihradi, S., Nurhadi, I.: Finite element analysis of bus rollover test in accordance with UN ECE R66 standard. J. Eng. Technol. Sci. 49(6), 799–810 (2017)

    Google Scholar 

  52. Isuzu Motors Limited. Isuzu N-Series Body Builders Guide (2014)

    Google Scholar 

  53. General Motors Isuzu Commercial Truck and American Isuzu motors Inc. Isuzu Body Builder’s Guide (2003)

    Google Scholar 

  54. Isuzu Motors Inc.: Isuzu N-Series Body Builder Guides. www.isuzutruckservice.com%0ADownload (2016)

    Google Scholar 

  55. Bitzenbauer, J., Franz, U., Schweizerhof, K.: Deformable Rigid Bodies in LS-DYNA with Applications – Merits and Limits (2005)

    Google Scholar 

  56. LSTC 2021: Hourglass-Welcome to the LS-DYNA support site. Livermore Software Technology Corporation (LSTC). https://www.dynasupport.com/howtos/element/hourglass. Accessed 19 May 2021

  57. Seyedi, M., Jung, S., Wekezer, J.: A comprehensive assessment of bus rollover crashes : integration of multibody dynamic and finite element simulation methods. Int. J. Crashworthiness 27(3), 1–16 (2020)

    Google Scholar 

  58. Wang, Q., Zhou, W., Telichev, I., Wu, C.Q.: Load transfer analysis of a bus bay section under standard rollover test using U*M index. Int. J. Automot. Technol. 19(4), 705–716 (2018)

    Article  Google Scholar 

  59. Elseufy, S.M., Mawsouf, N.M., Ahmad, A.: Safety evaluation of buses during rollover. J. Manag. Eng. Integr. 6(March), 102–108 (2013)

    Google Scholar 

  60. Chirwa, E.C., Li, H., Qian, P.: Modelling a 32-seat bus and virtual testing for R66 compliance. Int. J. Crashworthiness 20(2), 200–209 (2015)

    Article  Google Scholar 

  61. Kwasniewski, L., Bojanowski, C., Siervogel, J., Wekezer, J.W., Cichocki, K.: Crash and safety assessment program for paratransit buses. Int. J. Impact Eng. 36(2), 235–242 (2009)

    Article  Google Scholar 

  62. Livermore Software Technology Corporation, Keyword User‘s Manual Vol II, vol. I, no. May (2007)

    Google Scholar 

  63. Rabbat, B.G., Russell, H.G.: Friction coefficient of steel on concrete or grout. J. Struct. Eng. 111(3), 505–515 (1985)

    Article  Google Scholar 

  64. Gleba, M.: Effect of Friction on Vehicle Crashworthiness during Rollover. Florida State University Libraries (2015)

    Google Scholar 

  65. Zhu, L.: Development of guidelines for deformable and rigid switch in Ls-Dyna simulation. University of Nebraska (2009)

    Google Scholar 

  66. Zhou, W., Kuznetcov, A., Telichev, I., Wu, C.: Deformable-rigid switch in computational simulation of bus rollover test. Int. Union Theor. Appl. Mech., no. August, pp. 3–4 (2016)

    Google Scholar 

  67. Hamid, I.A., Kamarudin, K.A., Osman, M.R., Abidin, A.N.S.Z., Zulkipli, Z.H.: Finite element bus rollover test verification. J. Soc. Automot. Eng. Malaysia 3(4), 57–63 (2019)

    Article  Google Scholar 

  68. LSTC 2021: Total energy-Welcome to the LS-DYNA support site. Livermore Software Technology Corporation (LSTC). https://www.dynasupport.com/howtos/general/total-energy. Accessed 19 May 2021

  69. LSTC 2021: Energy data-Welcome to the LS-DYNA support site. Livermore Software Technology Corporation (LSTC). https://www.dynasupport.com/tutorial/ls-dyna-users-guide/energy-data. Accessed 19 May 2021

  70. Belegundu, A.D., Chandrupatla, T.R.: Optimization Concepts and Applications in Engineering, 3rd ed. Cambridge University Press (2019)

    Google Scholar 

  71. Vanderplaats, G.N.: Structural optimization for statics, dynamics and beyond. J. Brazilian Soc. Mech. Sci. Eng. 28(3), 316–322 (2006)

    Article  Google Scholar 

  72. Witteman, W.J.: Improved Vehicle Crashworthiness Design by Control of the Energy Absorption for Different Collision Situations, Thesis, 1999, Eindhoven University of Technology, ISBN 90-386-0880-2, no. 1999 (1999)

    Google Scholar 

  73. Kurtaran, H., Eskandarian, A., Marzougui, D., Bedewi, N.E.: Crashworthiness design optimization using successive response surface approximations. Comput. Mech. 29(4–5), 409–421 (2002)

    Article  MATH  Google Scholar 

  74. Esfahlani, S.S., Shirvani, H., Nwaubani, S., Shirvani, A., Mebrahtu, H.: Comparative study of honeycomb optimization using Kriging and radial basis function. Theor. Appl. Mech. Lett. 3(3), 031002 (2013)

    Article  Google Scholar 

  75. Stander, N., Roux, W., Goel, T., Eggleston, T., Craig, K.: LS – OPT User’s Manual: A Design Optimization and Probabilistic Analysis Tool. Livermore Softw. Technol. Corp., no. February (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailemichael Solomon Addisu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Addisu, H.S., Koricho, E.G., Kassie, A.A. (2023). Numerical Simulation and Optimization of a Locally Built Midibus Structure in Quasi-static and Rollover Condition. In: Woldegiorgis, B.H., Mequanint, K., Bitew, M.A., Beza, T.B., Yibre, A.M. (eds) Artificial Intelligence and Digitalization for Sustainable Development. ICAST 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 455. Springer, Cham. https://doi.org/10.1007/978-3-031-28725-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28725-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28724-4

  • Online ISBN: 978-3-031-28725-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation