Robotics and Artificial Intelligence in the Nuclear Industry: From Teleoperation to Cyber Physical Systems

  • Chapter
  • First Online:
Artificial Intelligence for Robotics and Autonomous Systems Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1093))

Abstract

This book chapter looks to address how upcoming technology can be used to improve the efficiency of decommissioning processes within the nuclear industry. Challenges associated with decommissioning are introduced with a brief overview of the previous efforts and current practices of nuclear decommissioning. A high-level cyber-physical architecture for nuclear decommissioning applications is then proposed by drawing upon recent technological advances in the realm of Industry 4.0 such as internet of things, sensor networks, and increased use of data analytics and cloud computing approaches. In the final section, based on demands and proposals from industry, possible applications within the nuclear industry are identified and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. NAO. (2022). The decommissioning of the AGR nuclear power stations. https://www.nao.org.uk/report/the-decommissioning-of-the-agr-nuclear-power-stations/.

  2. Nuclear Decommissioning Authority. (2022). Nuclear Decommissioning Authority Annual Report and Account 2021/22. http://www.nda.gov.uk/documents/upload/Annual-Report-and-Accounts-2010-2011.pdf.

  3. NEA. (2014). R&D and Innovation Needs for Decommissioning Nuclear Facilities. https://www.oecd-nea.org/jcms/pl_14898/r-d-and-innovation-needs-for-decommissioning-nuclear-facilities.

  4. Industry Radiological Protection Co-ordination Group. (2012). The application of ALARP to radiological risk, (IRPCG) Group.

    Google Scholar 

  5. Marturi, N., et al. (2017). Towards advanced robotic manipulations for nuclear decommissioning. In Robots operating in hazardous environments. https://doi.org/10.5772/intechopen.69739.

  6. Watson, S., Lennox, B., & Jones, J. (2020). Robots and autonomous systems for nuclear environments.

    Google Scholar 

  7. Sellafield Ltd. (2021). Future research and development requirements 2021 (pp. 1–32).

    Google Scholar 

  8. NDA. (2019). Integrated waste management radioactive waste strategy. https://www.gov.uk/government/consultations/nda-radioactive-waste-management-strategy.

  9. Bogue, R. (2015). Robots in the nuclear industry: a review of technologies and applications.

    Google Scholar 

  10. Montazeri, A., & Ekotuyo, J. (2016). Development of dynamic model of a 7DOF hydraulically actuated tele-operated robot for decommissioning applications. In Proceedings of American Control Conference (Vol. 2016-July, pp. 1209–1214). https://doi.org/10.1109/ACC.2016.7525082. (Jul 2016).

  11. Montazeri, A., West, C., Monk, S. D., & Taylor, C. J. (2017). Dynamic modelling and parameter estimation of a hydraulic robot manipulator using a multi-objective genetic algorithm. International Journal of Control, 90(4), 661–683. https://doi.org/10.1080/00207179.2016.1230231.

  12. West, C., Montazeri, A., Monk, S. D., & Taylor, C. J. (2016). A genetic algorithm approach for parameter optimization of a 7DOF robotic manipulator. IFAC-PapersOnLine, 49(12), 1261–1266. https://doi.org/10.1016/j.ifacol.2016.07.688.

    Article  Google Scholar 

  13. West, C., Montazeri, A., Monk, S. D., Duda, D. & Taylor, C. J. (2017). A new approach to improve the parameter estimation accuracy in robotic manipulators using a multi-objective output error identification technique. In RO-MAN 2017-26th IEEE International Symposium on Robot and Human Interactive Communication, Dec. 2017 (Vol. 2017-Jan, pp. 1406–1411). https://doi.org/10.1109/ROMAN.2017.8172488.

  14. Burrell, T., Montazeri, A., Monk, S., & Taylor, C. J. J. (2016). Feedback control—based inverse kinematics solvers for a nuclear decommissioning robot. IFAC-PapersOnLine, 49(21), 177–184. https://doi.org/10.1016/j.ifacol.2016.10.541.

    Article  Google Scholar 

  15. Oveisi, A., Anderson, A., Nestorović, T., Montazeri, A. (2018). Optimal input excitation design for nonparametric uncertainty quantification of multi-input multi-output systems (Vol. 51, no. 15, pp. 114–119). https://doi.org/10.1016/j.ifacol.2018.09.100.

  16. Oveisi, A., Nestorović, T., & Montazeri, A. (2018). Frequency domain subspace identification of multivariable dynamical systems for robust control design, vol. 51, no. 15, pp. 990–995. https://doi.org/10.1016/j.ifacol.2018.09.065.

  17. West, C., Monk, S. D., Montazeri, A., & Taylor, C. J. (2018) A vision-based positioning system with inverse dead-zone control for dual-hydraulic manipulators. In 2018 UKACC 12th International Conference on Control, CONTROL 2018 (pp. 379–384). https://doi.org/10.1109/CONTROL.2018.8516734. (Oct, 2018).

  18. West, C., Wilson, E. D., Clairon, Q., Monk, S., Montazeri, A., & Taylor, C. J. (2018). State-dependent parameter model identification for inverse dead-zone control of a hydraulic manipulator⁎. IFAC-PapersOnLine, 51(15), 126–131. https://doi.org/10.1016/j.ifacol.2018.09.102.

    Article  Google Scholar 

  19. Burrell, T., West, C., Monk, S. D., Montezeri, A., & Taylor, C. J. (2018). Towards a cooperative robotic system for autonomous pipe cutting in nuclear decommissioning. In 2018 UKACC 12th International Conference on Control, CONTROL 2018 (pp. 283–288). https://doi.org/10.1109/CONTROL.2018.8516841. (Oct 2018).

  20. Nemati, H., & Montazeri, A. (2018). Analysis and design of a multi-channel time-varying sliding mode controller and its application in unmanned aerial vehicles. IFAC-PapersOnLine, 51(22), 244–249. https://doi.org/10.1016/j.ifacol.2018.11.549.

    Article  Google Scholar 

  21. Nemati, H., & Montazeri, A. (2018). Design and development of a novel controller for robust attitude stabilisation of an unmanned air vehicle for nuclear environments. In 2018 UKACC 12th International Conference on Control (CONTROL) (pp. 373–378). https://doi.org/10.1109/CONTROL.2018.8516729.

  22. Nemati, H., Montazeri, A. (2019). Output feedback sliding mode control of quadcopter using IMU navigation. In Proceedings-2019 IEEE International Conference on Mechatronics, ICM 2019 (pp. 634–639). https://doi.org/10.1109/ICMECH.2019.8722899. (May 2019).

  23. Nokhodberiz, N. S., Nemati, H., & Montazeri, A. (2019). Event-triggered based state estimation for autonomous operation of an aerial robotic vehicle. IFAC-PapersOnLine, 52(13), 2348–2353. https://doi.org/10.1016/j.ifacol.2019.11.557.

    Article  Google Scholar 

  24. Lamb, F. (2013). Industrial automation hands-on.

    Google Scholar 

  25. Weyer, S., Schmitt, M., Ohmer, M., & Gorecky, D. (2015). Towards industry 4.0-Standardization as the crucial challenge for highly modular, multi-vendor production systems. IFAC-PapersOnLine, 28(3), 579–584. https://doi.org/10.1016/j.ifacol.2015.06.143.

    Article  Google Scholar 

  26. IAEA. (2004). The nuclear power industry’s ageing workforce : transfer of knowledge to the next generation (p. 101). (no. June).

    Google Scholar 

  27. Department for Business Energy and Industrial Strategy UK. 2022 Civil Nuclear Cyber Security Strategy. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1075002/civil-nuclear-cyber-security-strategy-2022.pdf. (no. May, 2022).

  28. Emptage, M., Loudon, D., Mcleod, R., Milburn, H., & Row, N. (2016). Characterisation: Challenges and opportunities–A UK perspective (pp. 1–10).

    Google Scholar 

  29. Euratom (2022) Cyber physicaL Equipment for unmAnned Nuclear DEcommissioning Measurements. Horizon 2020. Retrieved September 08, 2022, from https://cordis.europa.eu/project/id/945335.

  30. OECD/NEA. (1999). Decontamination techniques used in decommissioning activities. In Nuclear Energy Agency (p. 51).

    Google Scholar 

  31. Aitken, J. M., et al. (2018). Autonomous nuclear waste management. IEEE Intelligent Systems, 33(6), 47–55. https://doi.org/10.1109/MIS.2018.111144814.

    Article  MathSciNet  Google Scholar 

  32. Euratom (2020) PREDIS. Horizon 2020. https://doi.org/10.3030/945098.

  33. Smith, R., Cucco, E., & Fairbairn, C. (2020). Robotic development for the nuclear environment: Challenges and strategy. Robotics, 9(4), 1–16. https://doi.org/10.3390/robotics9040094.

    Article  Google Scholar 

  34. Vitanov, I., et al. (2021). A suite of robotic solutions for nuclear waste decommissioning. Robotics, 10(4), 1–20. https://doi.org/10.3390/robotics10040112.

    Article  Google Scholar 

  35. Monk, S. D., Grievson, A., Bandala, M., West, C., Montazeri, A., & Taylor, C. J. (2021). Implementation and evaluation of a semi-autonomous hydraulic dual manipulator for cutting pipework in radiologically active environments. Robotics, 10(2). https://doi.org/10.3390/robotics10020062.

  36. Adjigble, M., Marturi, N., Ortenzi, V., Rajasekaran, V., Corke, P., & Stolkin, R. (2018). Model-free and learning-free gras** by Local Contact Moment matching. In IEEE International Conference on Intelligent Robots and Systems (pp. 2933–2940). https://doi.org/10.1109/IROS.2018.8594226.

  37. Tokatli, O., et al. (2021). Robot-assisted glovebox teleoperation for nuclear industry. Robotics, 10(3). https://doi.org/10.3390/robotics10030085.

  38. Jang, I., Carrasco, J., Weightman, A., & Lennox, B. (2019). Intuitive bare-hand teleoperation of a robotic manipulator using virtual reality and leap motion. In TAROS 2019 (pp. 283–294). London: Springer.

    Google Scholar 

  39. Sayed, M. E., Roberts, J. O., & Donaldson, K. (2022). Modular robots for enabling operations in unstructured extreme environments. Advanced Intelligent Systems. https://doi.org/10.1002/aisy.202000227.

    Article  Google Scholar 

  40. Cerba, Š, Lüley, J., Vrban, B., Osuský, F., & Nečas, V. (2020). Unmanned radiation-monitoring system. IEEE Transactions on Nuclear Science, 67(4), 636–643. https://doi.org/10.1109/TNS.2020.2970782.

    Article  Google Scholar 

  41. Tsitsimpelis, I., Taylor, C. J., Lennox, B., & Joyce, M. J. (2019). A review of ground-based robotic systems for the characterization of nuclear environments. Progress in Nuclear Energy, 111, 109–124. https://doi.org/10.1016/j.pnucene.2018.10.023. (no. Oct, 2018).

  42. Groves, K., Hernandez, E., West, A., Wright, T., & Lennox, B. (2021). Robotic exploration of an unknown nuclear environment using radiation informed autonomous navigation. Robotics, 10(2), 1–15. https://doi.org/10.3390/robotics10020078.

    Article  Google Scholar 

  43. Groves, K., West, A., Gornicki, K., Watson, S., Carrasco, J., & Lennox, B. (2019). MallARD: An autonomous aquatic surface vehicle for inspection and monitoring of wet nuclear storage facilities. Robotics, 8(2). https://doi.org/10.3390/ROBOTICS8020047.

  44. Parasuraman, R., Sheridan, T. B., & Wickens, C. D. (2000). A model for types and levels of human interaction with automation. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 30(3), 286–297. https://doi.org/10.1109/3468.844354.

  45. Gamer, T., Hoernicke, M., Kloepper, B., Bauer, R., & Isaksson, A. J. (2020). The autonomous industrial plant–future of process engineering, operations and maintenance. Journal of Process Control, 88, 101–110. https://doi.org/10.1016/j.jprocont.2020.01.012.

    Article  Google Scholar 

  46. Luckcuck, M., Fisher, M., Dennis, L., Frost, S., White, A., & Styles, D. (2021). Principles for the development and assurance of autonomous systems for safe use in hazardous environments. https://doi.org/10.5281/zenodo.5012322.

  47. Blum, C., Winfield, A. F. T., & Hafner, V. V. (2018). Simulation-based internal models for safer robots. Frontiers in Robotics and AI, 4. https://doi.org/10.3389/frobt.2017.00074. (no. Jan, 2018).

  48. Lee, E. A. (2008). Cyber physical systems: Design challenges. In Proceedings-11th IEEE Symposium Object/Component/Service-Oriented Real-Time Distributed Computing ISORC 2008, (pp. 363–369). https://doi.org/10.1109/ISORC.2008.25.

  49. NIST. (2017). Framework for Cyber-Physical Systems: Volume 1, Overview NIST Special Publication 1500–201 Framework for Cyber-Physical Systems: Volume 1, Overview. https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1500-201.pdf.

  50. Wang, L., Törngren, M., & Onori, M. (2015). Current status and advancement of cyber-physical systems in manufacturing. Journal of Manufacturing Systems, 37, 517–527. (no. Oct, 2020). https://doi.org/10.1016/j.jmsy.2015.04.008.

  51. Lee, J., Bagheri, B., & Kao, H. A. (2015). A cyber-physical systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18–23. https://doi.org/10.1016/j.mfglet.2014.12.001.

    Article  Google Scholar 

  52. Pivoto, D. G. S., de Almeida, L. F. F., da Rosa Righi, R., Rodrigues, J. J. P. C., Lugli, A. B., & Alberti, A. M. (2021). Cyber-physical systems architectures for industrial internet of things applications in Industry 4.0: A literature review. Journal of Manufacturing Systems, 58(no. PA), 176–192. https://doi.org/10.1016/j.jmsy.2020.11.017.

  53. Sisinni, E., Saifullah, A., Han, S., Jennehag, U., & Gidlund, M. (2018). Industrial internet of things: Challenges, opportunities, and directions. IEEE Transactions on Industrial Informatics, 14(11), 4724–4734. https://doi.org/10.1109/TII.2018.2852491.

    Article  Google Scholar 

  54. Aceto, G., Persico, V., Pescapé, A., & Member, S. (2019). A Survey on information and communication technologies for industry 4.0: State-of-the-art, taxonomies, perspectives, and challenges. IEEE Communications Surveys and Tutorials, 21(4), 3467–3501.

    Article  Google Scholar 

  55. Luo, R. C., & Kuo, C. W. (2016). Intelligent seven-DoF robot with dynamic obstacle avoidance and 3-D object recognition for industrial cyber-physical systems in manufacturing automation. Proceedings of the IEEE, 104(5), 1102–1113. https://doi.org/10.1109/JPROC.2015.2508598.

    Article  Google Scholar 

  56. Yaacoub, J. P. A., Salman, O., Noura, H. N., Kaaniche, N., Chehab, A., & Malli, M. (2020). Cyber-physical systems security: Limitations, issues and future trends. Microprocessors and Microsystems, 77. https://doi.org/10.1016/j.micpro.2020.103201.

  57. Wollschalger, M., Sauter, T., & Jasperneite, J. (2017). The Future of Industrial Communication. IEEE Industrial Electronics Magazine, pp. 17–27. (no. March).

    Google Scholar 

  58. Krishnamurthi, R., Kumar, A., Gopinathan, D., Nayyar, A., & Qureshi, B. (2020). An overview of IoT sensor data processing, fusion, and analysis techniques. Sensors, 20(21), 1–23. https://doi.org/10.3390/s20216076.

    Article  Google Scholar 

  59. Simoens, P., Dragone, M., & Saffiotti, A. (2018). The internet of robotic things: A review of concept, added value and applications. International Journal of Advanced Robotic Systems, 15(1), 1–11. https://doi.org/10.1177/1729881418759424.

    Article  Google Scholar 

  60. Mukherjee, M., Shu, L., & Wang, D. (2018). Survey of fog computing: Fundamental, network applications, and research challenges. IEEE Communications Surveys and Tutorials, 20(3), 1826–1857. https://doi.org/10.1109/COMST.2018.2814571.

    Article  Google Scholar 

  61. Qiu, T., Chi, J., Zhou, X., Ning, Z., Atiquzzaman, M., & Wu, D. O. (2020). Edge computing in industrial internet of things: Architecture, advances and challenges. IEEE Communications Surveys and Tutorials, 22(4), 2462–2488. https://doi.org/10.1109/COMST.2020.3009103.

    Article  Google Scholar 

  62. Kehoe, B., Patil, S., Abbeel, P., & Goldberg, K. (2015). A survey of research on cloud robotics and automation. IEEE Transactions on Automation Science and Engineering, 12(2), 398–409. https://doi.org/10.1109/TASE.2014.2376492.

    Article  Google Scholar 

  63. Chaari, I., Koubaa, A., Qureshi, B., Youssef, H., Severino, R., & Tovar, E. (2018). On the robot path planning using cloud computing for large grid maps. In 18th IEEE International Conference on Autonomous Robot Systems and Competitions. ICARSC 2018, (pp. 225–230). https://doi.org/10.1109/ICARSC.2018.8374187.

  64. Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile Network Application, 19(2), 171–209. https://doi.org/10.1007/s11036-013-0489-0.

    Article  Google Scholar 

  65. Tao, F., Qi, Q., Wang, L., & Nee, A. Y. C. (2019). Digital twins and cyber-physical systems toward smart manufacturing and industry 4.0: Correlation and comparison. Engineering, 5(4), 653–661. https://doi.org/10.1016/j.eng.2019.01.014.

    Article  Google Scholar 

  66. Upadhyay, H., Lagos, L., Joshi, S., & Abrahao, A. (2018) Big data framework with machine learning for D&D applications.

    Google Scholar 

  67. Glaessgen, E. H., & Stargel, D. S. (2012). The digital twin paradigm for future NASA and U.S. Air force vehicles. In 53rd Structures, Structural Dynamics, and Materials Conference: Special Session on the Digital Twin (pp. 1–14).

    Google Scholar 

  68. Minerva, R., Lee, G. M., & Crespi, N. (2020). Digital twin in the IoT context: A survey on technical features, scenarios, and architectural models. Proceedings of the IEEE, 108(10), 1785–1824. https://doi.org/10.1109/JPROC.2020.2998530.

    Article  Google Scholar 

  69. Fuller, A., Fan, Z., Day, C., & Barlow, C. (2020). Digital twin: Enabling technologies, challenges and open research. IEEE Access, 8, 108952–108971. https://doi.org/10.1109/ACCESS.2020.2998358.

    Article  Google Scholar 

  70. Mathworks (2021) Digital twins for predicitive maintenance. https://explore.mathworks.com/digital-twins-for-predictive-maintenance.

  71. Weiss, G. (1999). Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence, (Vol. 3, no. 2). http://books.google.com/books?hl=nl&lr=&id=JYcznFCN3xcC&pgis=1.

  72. Russell, S., & Norvig, P. (2010). Artificial intelligence: A modern approach. Prentice Hall.

    Google Scholar 

  73. Alpaydın, E. (2010). Introduction to machine learning second edition. MIT Press. https://doi.org/10.1007/978-1-62703-748-8_7.

  74. Goodfellow, I., Bengio, Y., & Courville, A. (2012) Deep learning.

    Google Scholar 

  75. Li, Y., et al. (2022) A review on interaction control for contact robots through intent detection. Progress in Biomedical Engineering, 4(3). https://doi.org/10.1088/2516-1091/ac8193.

  76. Ganesh, G., Takagi, A., Osu, R., Yoshioka, T., Kawato, M., & Burdet, E. (2014). Two is better than one: Physical interactions improve motor performance in humans. Science and Reports, 4(1), 3824. https://doi.org/10.1038/srep03824.

    Article  Google Scholar 

  77. Takagi, A., Ganesh, G., Yoshioka, T., Kawato, M., & Burdet, E. (2017). Physically interacting individuals estimate the partner’s goal to enhance their movements. Nature Human Behaviour, 1(3), 54. https://doi.org/10.1038/s41562-017-0054.

    Article  Google Scholar 

  78. Li, Y., Eden, J., Carboni, G., & Burdet, E. (2020). Improving tracking through human-robot sensory augmentation. IEEE Robotics and Automation Letters, 5(3), 4399–4406. https://doi.org/10.1109/LRA.2020.2998715.

    Article  Google Scholar 

  79. Başar, T., & Olsder, G. J. (1998). Dynamic noncooperative game theory (2nd ed.). Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611971132.

  80. Nilsson, N. (1969). A mobile Automaton. An application of artificial intelligence techniques.

    Google Scholar 

  81. Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation, 2(1), 14–23. https://doi.org/10.1109/JRA.1986.1087032.

    Article  Google Scholar 

  82. Siciliano, B., & Khatib, O. (2012). Handbook of robotics. https://springer.longhoe.net/book/. https://doi.org/10.1007/978-3-319-32552-1.

  83. Albus, J., et al. (2002). 4D/RCS version 2.0: A reference model architecture for unmanned vehicle systems. NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg, MD. https://doi.org/10.6028/NIST.IR.6910.

  84. Mataric, M. J. (2008). The robotics primer. MIT Press. https://doi.org/10.5860/choice.45-3222.

  85. Di Buono, A., Cockbain, N., Green, P., & Lennox, B. (2021). Wireless communications in nuclear decommissioning environments. In UK-RAS Conference: Robots Working For and Among us Proceedings (Vol. 1, pp. 71–73). https://doi.org/10.31256/ukras17.23.

  86. Spong, M. W. (2022). An historical perspective on the control of robotic manipulators. Annual Review of Control, Robotics, and Autonomous Systems, 5(1). https://doi.org/10.1146/annurev-control-042920-094829.

  87. Slotine, J.-J. E., & Li, W. (2011). Applied nonlinear control. Prentice Hall.

    MATH  Google Scholar 

  88. Craig, J. J., Hsu, P., & Sastry, S. S. (1987). Adaptive control of mechanical manipulators. The International Journal of Robotics Research, 6(2), 16–28. https://doi.org/10.1177/027836498700600202.

    Article  Google Scholar 

  89. Shousong, H., & Qixin, Z. (2003). Stochastic optimal control and analysis of stability of networked control systems with long delay. Automatica, 39(11), 1877–1884. https://doi.org/10.1016/S0005-1098(03)00196-1.

    Article  MathSciNet  MATH  Google Scholar 

  90. Huang, D., & Nguang, S. K. (2008). State feedback control of uncertain networked control systems with random time delays. IEEE Transactions on Automatic Control, 53(3), 829–834. https://doi.org/10.1109/TAC.2008.919571.

    Article  MathSciNet  MATH  Google Scholar 

  91. Shi, Y., & Yu, B. (2009). Output feedback stabilization of networked control systems with random delays modeled by Markov chains. IEEE Transactions on Automatic Control, 54(7), 1668–1674. https://doi.org/10.1109/TAC.2009.2020638.

    Article  MathSciNet  MATH  Google Scholar 

  92. Hokayem, P. F., & Spong, M. W. (2006). Bilateral teleoperation: An historical survey. Automatica, 42(12), 2035–2057. https://doi.org/10.1016/j.automatica.2006.06.027.

    Article  MathSciNet  MATH  Google Scholar 

  93. Bemporad, A. (1998). Predictive control of teleoperated constrained systems with unbounded communication delays. In Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171), 1998 (Vol. 2, pp. 2133–2138). https://doi.org/10.1109/CDC.1998.758651.

  94. Guo, K., Su, H., & Yang, C. (2022) A small opening workspace control strategy for redundant manipulator based on RCM method. IEEE Transactions on Control Systems Technology, 1–9. https://doi.org/10.1109/TCST.2022.3145645.

  95. Walsh, G. C., Ye, H., & Bushnell, L. G. (2002). Stability analysis of networked control systems. IEEE Transactions on Control Systems Technology, 10(3), 438–446. https://doi.org/10.1109/87.998034.

    Article  Google Scholar 

  96. Tipsuwan, Y., & Chow, M.-Y. (2003). Control methodologies in networked control systems. Control Engineering Practice, 11, 1099–1111. https://doi.org/10.1016/S0967-0661(03)00036-4.

    Article  Google Scholar 

  97. Yue, D., Han, Q.-L., & Lam, J. (2005). Network-based robust H∞ control of systems with uncertainty. Automatica, 41(6), 999–1007. https://doi.org/10.1016/j.automatica.2004.12.011.

    Article  MathSciNet  MATH  Google Scholar 

  98. Zhang, X.-M., Han, Q.-L., & Zhang, B.-L. (2017). An overview and deep investigation on sampled-data-based event-triggered control and filtering for networked systems. IEEE Transactions on Industrial Informatics, 13(1), 4–16. https://doi.org/10.1109/TII.2016.2607150.

    Article  MathSciNet  Google Scholar 

  99. Pasqualetti, F., Member, S., Dör, F., Member, S., & Bullo, F. (2013). Attack detection and identification in cyber-physical systems. Attack Detection and Identification in Cyber-Physical Systems, 58(11), 2715–2729.

    MathSciNet  MATH  Google Scholar 

  100. Dolk, V. S., Tesi, P., De Persis, C., & Heemels, W. P. M. H. (2017). Event-triggered control systems under denial-of-service attacks. IEEE Transactions on Control of Network Systems., 4(1), 93–105. https://doi.org/10.1109/TCNS.2016.2613445.

    Article  MathSciNet  MATH  Google Scholar 

  101. Ding, D., Han, Q.-L., **ang, Y., Ge, X., & Zhang, X.-M. (2018). A survey on security control and attack detection for industrial cyber-physical systems. Neurocomputing, 275(C), 1674–1683. https://doi.org/10.1016/j.neucom.2017.10.009.

  102. Yue, D., Tian, E., & Han, Q.-L. (2013). A delay system method for designing event-triggered controllers of networked control systems. IEEE Transactions on Automatic Control, 58(2), 475–481. https://doi.org/10.1109/TAC.2012.2206694.

    Article  MathSciNet  MATH  Google Scholar 

  103. Wu, L., Gao, Y., Liu, J., & Li, H. (2017). Event-triggered sliding mode control of stochastic systems via output feedback. Automatica, 82, 79–92. https://doi.org/10.1016/j.automatica.2017.04.032.

    Article  MathSciNet  MATH  Google Scholar 

  104. Li, X.-M., Zhou, Q., Li, P., Li, H., & Lu, R. (2020). Event-triggered consensus control for multi-agent systems against false data-injection attacks. IEEE Transactions on Cybernetics, 50(5), 1856–1866. https://doi.org/10.1109/TCYB.2019.2937951.

    Article  Google Scholar 

  105. Zhang, L., Liang, H., Sun, Y., & Ahn, C. K. (2021). Adaptive event-triggered fault detection scheme for semi-markovian jump systems with output quantization. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(4), 2370–2381. https://doi.org/10.1109/TSMC.2019.2912846.

  106. Huo, X., Karimi, H. R., Zhao, X., Wang, B., & Zong, G. (2022). Adaptive-critic design for decentralized event-triggered control of constrained nonlinear interconnected systems within an identifier-critic framework. IEEE Transactions on Cybernetics, 52(8), 7478–7491. https://doi.org/10.1109/TCYB.2020.3037321.

    Article  Google Scholar 

  107. Dao, H. V., Tran, D. T., & Ahn, K. K. (2021). Active fault tolerant control system design for hydraulic manipulator with internal leakage faults based on disturbance observer and online adaptive identification. IEEE Access, 9, 23850–23862. https://doi.org/10.1109/ACCESS.2021.3053596.

    Article  Google Scholar 

  108. Yu, X., & Jiang, J. (2015). A survey of fault-tolerant controllers based on safety-related issues. Annual Reviews in Control, 39, 46–57. https://doi.org/10.1016/j.arcontrol.2015.03.004.

    Article  Google Scholar 

  109. Freddi, A., Longhi, S., Monteriù, A., Ortenzi, D., & Proietti Pagnotta, D. (2019). Fault tolerant control scheme for robotic manipulators affected by torque faults. IFAC-PapersOnLine, 51(24), 886–893. https://doi.org/10.1016/j.ifacol.2018.09.680.

  110. Corke, P. (2016). Robotics, vision and control (2nd ed.). Springer.

    Google Scholar 

  111. Brock, O., Kuffner, J., & **ao, J. (2012) Robotic motion planning. In Springer handbook of robotics. Springer.

    Google Scholar 

  112. Marturi, N., et al. (2017). Towards advanced robotic manipulation for nuclear decommissioning: A pilot study on tele-operation and autonomy. In International Conference on. Robotics and Automation for Humanitarian Applications RAHA 2016-Conference Proceedings. https://doi.org/10.1109/RAHA.2016.7931866.

  113. Spong, M. W., Hutchinson, S., & Vidyasgar, M. (2004). Robot dynamics and control.

    Google Scholar 

  114. Lozano-PéRez, T. (1987). A simple motion-planning algorithm for general robot manipulators. IEEE Journal of Robotics and Automation, 3(3), 224–238. https://doi.org/10.1109/JRA.1987.1087095.

    Article  Google Scholar 

  115. Lavalle, S., & Kuffner, J. (2000). Rapidly-exploring random trees: Progress and prospects. Algorithmic Computational Robotics. (New Dir.).

    Google Scholar 

  116. Kavraki, L. E., Švestka, P., Latombe, J. C., & Overmars, M. H. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 12(4), 566–580. https://doi.org/10.1109/70.508439.

    Article  Google Scholar 

  117. Hsueh, H.-Y., et al. (2022). Systematic comparison of path planning algorithms using PathBench (pp. 1–23). http://arxiv.org/abs/2203.03092.

  118. Guo, N., Li, C., Gao, T., Liu, G., Li, Y., & Wang, D. (2021). A fusion method of local path planning for mobile robots based on LSTM neural network and reinforcement learning. Mathematical Problems in Engineering, 2021. https://doi.org/10.1155/2021/5524232.

  119. Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., & Quillen, D. (2018). Learning hand-eye coordination for robotic gras** with deep learning and large-scale data collection. International Journal of Robotics Research, 37(4–5), 421–436. https://doi.org/10.1177/0278364917710318.

    Article  Google Scholar 

  120. Bateux, Q., et al. (2018). Training deep neural networks for visual servoing. In ICRA 2018-IEEE International Conference on Robotics and Automation, 2018 (pp. 3307–3314).

    Google Scholar 

  121. Treiber, M. (2013). An introduction to object recognition selected algorithms for a wide variety of applications. Springer.

    Google Scholar 

  122. Felzenszwalb, P. F., Girshick, R. B., McAllester, D., & Ramanan, D. (2010). Object detection with discriminatively trained part based models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(9). https://doi.org/10.1109/MC.2014.42.

  123. Torralba, A., Murphy, K. P., Freeman, W. T., & Rubin, M. A. (2003). Context-based vision system for place and object recognition. In Proceedings of the IEEE International Conference on Computer Vision (Vol. 1, pp. 273–280). https://doi.org/10.1109/iccv.2003.1238354.

  124. Zakharov, S., Shugurov, I., & Ilic, S. (2019) DPOD: 6D pose object detector and refiner. In Proceedings of the IEEE International Conference on Computer Vision, (Vol. 2019 Oct, pp. 1941–1950). https://doi.org/10.1109/ICCV.2019.00203.

  125. Sun, L., Zhao, C., & Yan, Z. (2019). A novel weakly-supervised approach for RGB-D-based nuclear waste object detection (Vol. 19, no. 9, pp. 3487–3500).

    Google Scholar 

  126. Zhao, C., Sun, L., Purkait, P., Duckett, T., & Stolkin, R. (2018). Dense RGB-D semantic map** with pixel-voxel neural network. Sensors (Switzerland), 18(9). https://doi.org/10.3390/s18093099.

  127. Gorschlüter, F., Rojtberg, P., & Pöllabauer, T. (2022). A Survey of 6D object detection based on 3D models for industrial applications. Journal of Imaging, 8(3), 1–18. https://doi.org/10.3390/jimaging8030053.

    Article  Google Scholar 

  128. Patterson, E. A., Taylor, R. J., & Bankhead, M. (2016). A framework for an integrated nuclear digital environment. Progress in Nuclear Energy, 87, 97–103. https://doi.org/10.1016/j.pnucene.2015.11.009.

    Article  Google Scholar 

  129. Lu, R. Y., Karoutas, Z., & Sham, T. L. (2011). CASL virtual reactor predictive simulation: Grid-to-rod fretting wear. JOM Journal of the Minerals Metals and Materials Society, 63(8), 53–58. https://doi.org/10.1007/s11837-011-0139-6.

    Article  Google Scholar 

  130. Bowman, D., Dwyer, L., Levers, A., Patterson, E. A., Purdie, S., & Vikhorev, K. (2022) A unified approach to digital twin architecture–Proof-of-concept activity in the nuclear sector. IEEE Access, 1–1. https://doi.org/10.1109/access.2022.3161626.

  131. Kawabata, K., & Suzuki, K. (2019) Development of a robot simulator for remote operations for nuclear decommissioning. In 2019 16th Int. Conf. Ubiquitous Robot. UR 2019 (pp. 501–504). https://doi.org/10.1109/URAI.2019.8768640.

  132. Partiksha, & Kattepur, A. (2022). Robotic tele-operation performance analysis via digital twin simulations (pp. 415–417). https://doi.org/10.1109/comsnets53615.2022.9668555.

  133. Wright, T., West, A., Licata, M., Hawes, N., & Lennox, B. (2021). Simulating ionising radiation in gazebo for robotic nuclear inspection challenges. Robotics, 10(3), 1–27. https://doi.org/10.3390/robotics10030086.

    Article  Google Scholar 

  134. Kim, M., Lee, S. U., & Kim, S. S. (2021). Real-time simulator of a six degree-of-freedom hydraulic manipulator for pipe-cutting applications. IEEE Access, 9, 153371–153381. https://doi.org/10.1109/ACCESS.2021.3127502.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allahyar Montazeri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shanahan, D., Wang, Z., Montazeri, A. (2023). Robotics and Artificial Intelligence in the Nuclear Industry: From Teleoperation to Cyber Physical Systems. In: Azar, A.T., Koubaa, A. (eds) Artificial Intelligence for Robotics and Autonomous Systems Applications. Studies in Computational Intelligence, vol 1093. Springer, Cham. https://doi.org/10.1007/978-3-031-28715-2_5

Download citation

Publish with us

Policies and ethics

Navigation