Part of the book series: Lecture Notes in Bioengineering ((LNBE))

Abstract

Nowadays, medical imaging and healthcare in general are facing an ever growing number of challenges. Increase in life expectancy, for example, results in a growing economic cost of healthcare services. In particular, the need for medical imaging equipment worldwide is expected to grow driven by the global rise of various pathologies such as cancer, cardiovascular diseases, brain disorders and lung diseases. In this framework, medical imaging technologies play a key role, being the essential clinical tool to deliver accurate initial diagnosis and treatments’ monitoring. Similar to other imaging modalities, medical imaging based on microwave technology requires designing systems with increasing number of sensors (i.e. antennas). Using metasurfaces can not only improve the characteristics of these antennas, but also enhance detection by tackling the impedance mismatch problem that electromagnetic waves encounter when probing human tissue. This chapter focuses on two potential clinical applications where the use of metasurfaces can improve the performance of microwave-based systems: stroke detection and liver ablation monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Puentes Vargas, Planar Metamaterial Based Microwave Sensor Arrays for Biomedical Analysis and Treatment (Springer International Publishing, Switzerland, 2014)

    Google Scholar 

  2. K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C.M. Soukoulis, E. Ozbay, Investigation of magnetic resonances for different split-ring resonator parameters and designs. New J. Phys. 7, 1–15 (2005)

    Article  MathSciNet  Google Scholar 

  3. M.J. Freire, R. Marques, L. Jelinek, Experimental demonstration of a \(\mu \)=-1 metamaterial lens for magnetic resonance imaging. Appl. Phys. Lett 93(23), 1–4 (2008)

    Article  Google Scholar 

  4. M.A. Lopez, M.J. Freire, J.M. Algarin, V.C. Behr, P.M. Jakob, R. Marqús, Nonlinear split-ring metamaterial slabs for magnetic resonance imaging. Appl. Phys. Lett. 98(13), 1–3 (2011)

    Article  Google Scholar 

  5. A.P. Slobozhanyuk, A.N. Poddubny, A.J. Raaijmakers, C.A. Van Den Berg, A.V. Kozachenko, I.A. Dubrovina, I.V. Melchakova, Y.S. Kivshar, P.A. Belov, Enhancement of magnetic resonance imaging with metasurfaces. Adv. Mater. 28(9), 1832–1838 (2016)

    Article  Google Scholar 

  6. L.L. Spada, F. Bilotti, L. Vegni, Metamaterial biosensor for cancer detection, in IEEE Sensors Proceedings (Limerik, Ireland, 2011)

    Google Scholar 

  7. S. Sugumaran, M. Faizal, M. Noor, C. Shekar, D. Schreurs, Biosensors and Bioelectronics Nanostructured materials with plasmonic nanobiosensors for early cancer detection: a past and future prospect. Biosens. Bioelectron. 100, 361–373 (2018)

    Article  Google Scholar 

  8. D. Isakov, C.J. Stevens, F. Castles, P.S. Grant, A split ring resonator dielectric probe for near-field dielectric imaging. Sci. Rep. 7(1), 1–9 (2017)

    Article  Google Scholar 

  9. S. Mukherjee, X. Shi, L. Udpa, S. Udpa, Y. Deng, P. Chahal, Design of a split-ring resonator sensor for near-field microwave imaging. IEEE Sensors J. 18(17), 7066–7076 (2018)

    Article  Google Scholar 

  10. S. Mukherjee, Z. Su, L. Udpa, S. Udpa, A. Tamburrino, Enhancement of microwave imaging using a metamaterial lens. IEEE Sensors J. 20, 1–11 (2019)

    Google Scholar 

  11. O. Yurduseven, V.R. Gowda, J.N. Gollub, D.R. Smith, Printed aperiodic cavity for computational and microwave imaging. IEEE Microw. Wireless Compon. Lett. 26(5), 367–369 (2016)

    Article  Google Scholar 

  12. J.N. Gollub, O. Yurduseven, K.P. Trofatter, D. Arnitz, M.F. Imani, T. Sleasman, M. Boyarsky, A. Rose, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D.L. Marks, M.S. Reynolds, D.R. Smith, Large metasurface aperture for millimeter wave computational imaging at the human-scale. Sci. Rep. 7, 1–10 (2017)

    Article  Google Scholar 

  13. J.N. Mait, G.W. Euliss, R.A. Athale, Computational imaging. Adv. Opt. Photonics 10(2), 409 (2018)

    Article  Google Scholar 

  14. O. Yurduseven, D. Smith, A reconfigurable millimeter-wave spotlight metasurface aperture integrated with a frequency-diverse microwave imager for security screening. Proc. SPIE 10634, 1–9 (2018)

    Google Scholar 

  15. M. Pastorino, Microwave Imaging (Wiley, Hoboken, New Jersey, U.S.A., 2010)

    Google Scholar 

  16. Q. Yang, J. Gu, D. Wang, X. Zhang, Z. Tian, C. Ouyang, R. Singh, J. Han, W. Zhang, Efficient flat metasurface lens for terahertz imaging. Opt. Express 22(21), 25931 (2014)

    Article  Google Scholar 

  17. G. Wang, J. Fang, X. Dong, Resolution of near-field microwave target detection and imaging by using flat LHM lens. IEEE Trans. Anten. Propag. 55, 3534–3541 (2007)

    Article  Google Scholar 

  18. H. Cano-Garcia, P. Kosmas, E. Kallos, Demonstration of enhancing the transmission of 60 GHz waves through biological tissue using thin metamaterial antireflection coatings, in 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, METAMATERIALS 2016 (Heraklion, Crete, Greece, 2016)

    Google Scholar 

  19. World Health Organization, The World Health Report 2002: Reducing Risks, Promoting Healthy Life (2002)

    Google Scholar 

  20. S.V. Semenov, D.R. Corfield, Microwave tomography for brain imaging: feasibility assessment for stroke detection. Int. J. Antennas Propag. 2008, 1–8 (2008)

    Article  Google Scholar 

  21. M. Hopfer, R. Planas, A. Hamidipour, T. Henriksson, S. Semenov, Electromagnetic tomography for detection, differentiation, and monitoring of brain stroke: a virtual data and human head phantom study. IEEE Trans. Antennas Propag. 59(5), 86–97 (2017)

    Article  Google Scholar 

  22. R. Scapaticci, L. Di Donato, I. Catapano, L. Crocco, A feasibility study on microwave imaging for brain stroke monitoring. Prog. Electromagn. Res., pp. 305–324 (2014)

    Google Scholar 

  23. S.V. Semenov, R. Planas, M. Hopfer, A. Hamidipour, A. Vasilenko, E. Stoegmann, E. Auff, Electromagnetic tomography for brain imaging: initial assessment for stroke detection, in IEEE Biomedical Circuits and Systems Conference: Engineering for Healthy Minds and Able Bodies (BioCAS) (Atlanta, Georgia, U.S.A., 2015)

    Google Scholar 

  24. P.M. Meaney, F. Shubitidze, M.W. Fanning, M. Kmiec, N.R. Epstein, K.D. Paulsen, Surface wave multipath signals in near-field microwave imaging. Int. J. Biomed. Imag. 2012, 1–11 (2012)

    Google Scholar 

  25. C.J. Fox, P.M. Meaney, F. Shubitidze, L. Potwin, K.D. Paulsen, Characterization of an implicitly resistively-loaded monopole antenna in lossy liquid media. Int. J. Antennas Propag. 2008, 1–9 (2008)

    Article  Google Scholar 

  26. H. Cano-Garcia, P. Kosmas, E. Kallos, Enhancing electromagnetic transmission through biological tissues at millimeter waves using subwavelength metamaterial antireflection coatings, in 9th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, METAMATERIALS 2015 (Oxford, UK, 2015)

    Google Scholar 

  27. H.T. Chen, J. Zhou, J.F. O’Hara, F. Chen, A.K. Azad, A.J. Taylor, Antireflection coating using metamaterials and identification of its mechanism. Phys. Rev. Lett. 105(7), 1–4 (2010)

    Article  Google Scholar 

  28. H.T. Chen, J. Zhou, J. O’Hara, A. Taylor, A numerical investigation of metamaterial antireflection coatings. Terahertz Sci. Technol. 3(2), 66–73 (2010)

    Google Scholar 

  29. S. Ahsan, Z. Guo, Z. Miao, I. Sotiriou, M. Koutsoupidou, E. Kallos, G. Palikaras, P. Kosmas, Multiple-frequency microwave tomography system. Sensors 18, 1–13 (2018)

    Article  Google Scholar 

  30. N. Ghavami, E. Razzicchia, O. Karadima, P. Lu, W. Guo, I. Sotiriou, E. Kallos, G. Palikaras, P. Kosmas, The use of metasurfaces to enhance microwave imaging: experimental validation for tomographic and radar-based algorithms. IEEE Open J. Antennas Propag. 3, 89–100 (2022)

    Article  Google Scholar 

  31. M. Lazebnik, E.L. Madsen, G.R. Frank, S.C. Hagness, Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications. Phys. Med. Biol. 50(18), 4245–4258 (2005)

    Article  Google Scholar 

  32. J.D. Shea, P. Kosmas, S.C. Hagness, B.D. Van Veen, Three-dimensional microwave imaging of realistic numerical breast phantoms via a multiple-frequency inverse scattering technique. Med. Phys. 37(8), 4210–4226 (2010)

    Article  Google Scholar 

  33. J.M. Bioucas-Dias, M.A. Figueiredo, A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image Process. 16(12), 2992–3004 (2007)

    Article  MathSciNet  Google Scholar 

  34. Z. Miao, P. Kosmas, Microwave breast imaging based on an optimized two-step iterative shrinkage/thresholding method, in 9th European Conference on Antennas and Propagation (EuCAP) (Lisbon, Portugal, 2015)

    Google Scholar 

  35. N. Ghavami, G. Tiberi, D.J. Edwards, A. Monorchio, UWB microwave imaging of objects with canonical shape. IEEE Trans. Antennas Propag. 60(1), 231–239 (2012)

    Article  Google Scholar 

  36. N. Ghavami, P.P. Smith, G. Tiberi, D. Edwards, I. Craddock, Non-iterative beamforming based on Huygens principle for multistatic ultrawide band radar: application to breast imaging. IET Microw. Antennas Propag. 9(12), 1233–1240 (2015)

    Article  Google Scholar 

  37. N. Ghavami, G. Tiberi, M. Ghavami, S. Dudley, M. Lane, Huygens principle based UWB microwave imaging method for skin cancer detection, in International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP) (Prague, Czech Republic, 2016)

    Google Scholar 

  38. E. Razzicchia, I. Sotiriou, H. Cano-Garcia, E. Kallos, G. Palikaras, P. Kosmas, Feasibility study of enhancing microwave brain imaging using metamaterials. Sensors 19(24), 1–17 (2019)

    Article  Google Scholar 

  39. S. Ahsan, M. Koutsoupidou, E. Razzicchia, I. Sotiriou, P. Kosmas, Advances towards the development of a brain microwave imaging scanner, in 13th European Conference on Antennas and Propagation (EuCAP) (Krakow, Poland, 2019)

    Google Scholar 

  40. CST Microwave Studio, Workflow and Solver Overview (CST—Computer Simulation Technology AG, Darmstadt, Germany, 2016), p.2016

    Google Scholar 

  41. D. Andreuccetti, An internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz-100 GHz. [Online]. Available: http://niremf.ifac.cnr.it/tissprop/

  42. N. Ghavami, E. Razzicchia, O. Karadima, P. Lu, W. Guo, I. Sotiriou, E. Kallos, G. Palikaras, P. Kosmas, The use of metasurfaces to enhance microwave imaging: experimental validation for tomographic and radar-based algorithms. IEEE Open J. Antennas Propag December, 1–1 (2021)

    Google Scholar 

  43. X.F. Bosch, J. Ribes, M. Díaz, R. Cléries, Primary liver cancer: worldwide incidence and trends. Gastroenterology 127(5 SUPPL. 1), 5–16 (2004)

    Article  Google Scholar 

  44. B. Yang, B. Zhang, Y. Xu, W. Wang, Y. Shen, A. Zhang, Z. Xu, Prospective study of early detection for primary liver cancer. J. Cancer Res. Clin. Oncol. 123(6), 357–360 (1997)

    Article  Google Scholar 

  45. D. Anwanwan, S.K. Singh, S. Singh, V. Saikam, R. Singh, Challenges in liver cancer and possible treatment approaches. Biochim. Biophys. Acta Rev. Cancer 1873(1), 188314 (2020)

    Article  Google Scholar 

  46. C.J. Simon, D.E. Dupuy, W.W. Mayo-Smith, Microwave ablation: principles and applications. Radiographics 25(25 SUPPL. 1), 69–83 (2005)

    Article  Google Scholar 

  47. B. Quesson, J.A. De Zwart, C.T. Moonen, Magnetic resonance temperature imaging for guidance of thermotherapy. J. Magn. Reson. Imaging 12(4), 525–533 (2000)

    Article  Google Scholar 

  48. R. Scapaticci, V. Lopresto, R. Pinto, M. Cavagnaro, L. Crocco, Monitoring thermal ablation via microwave tomography: an Ex Vivo experimental assessment. Diagnostics 8(4), 81 (2018)

    Article  Google Scholar 

  49. R. Scapaticci, G.G. Bellizzi, M. Cavagnaro, V. Lopresto, L. Crocco, Exploiting microwave imaging methods for real-time monitoring of thermal ablation. Int. J. Antennas Propag., 2017 (2017)

    Google Scholar 

  50. M. Wang, L. Crocco, M. Cavagnaro, On the design of a microwave imaging system to monitor thermal ablation of liver tumors. IEEE J. Electromagn. RF Microw. Med. Biol. 5(3), 231–237 (2021)

    Article  Google Scholar 

  51. M. Wang, R. Scapaticci, M. Cavagnaro, L. Crocco, Towards a microwave imaging system for continuous monitoring of liver tumor ablation: design and in silico validation of an experimental setup. Diagnostics, 11(5) (2021)

    Google Scholar 

  52. K. Kanazawa, K. Noritake, Y. Takaishi, S. Kidera, Microwave imaging algorithm based on waveform reconstruction for microwave ablation treatment. IEEE Trans. Antennas Propag. 68(7), 5613–5625 (2020)

    Article  Google Scholar 

  53. G. Chen, J. Stang, M. Haynes, E. Leuthardt, M. Moghaddam, Real-time three-dimensional microwave monitoring of interstitial thermal therapy. IEEE Trans. Biomed. Eng. 65(3), 528–538 (2018)

    Article  Google Scholar 

  54. V. Portosi, A.M. Loconsole, F. Prudenzano, A split ring resonator-based metamaterial for microwave impedance matching with biological tissue. Appl. Sci. (Switzerland) 10(19), 1–14 (2020)

    Google Scholar 

  55. Split Ring Resonator (SRR) Calculator. [Online]. Available: https://srrcalculator.blogspot.com/p/calculator.html

Download references

Acknowledgement

This research was supported by the EMERALD project funded from the European Union’s Horizon 2020 under the Marie Skłodowska-Curie grant agreement No. 764479.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleonora Razzicchia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Razzicchia, E., Ghavami, N., Karadima, O., Kosmas, P. (2023). Metasurface Technology for Medical Imaging. In: Vipiana, F., Crocco, L. (eds) Electromagnetic Imaging for a Novel Generation of Medical Devices. Lecture Notes in Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-031-28666-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28666-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28665-0

  • Online ISBN: 978-3-031-28666-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation