Distribution of Police Patrols as a Covering Problem in Smart Cities: Fuengirola Use Case

  • Conference paper
  • First Online:
Smart Cities ( ICSC-CITIES 2022)

Abstract

Security and emergency services are among the biggest concerns for both authorities and citizens. Better adapting those services to inhabitants is a key goal for smart cities. All emergency services have their own peculiarities, and in particular, the control of police patrols in urban areas is a complex problem connected to the dynamic vehicle routing and traveling salesman problems. We propose in this paper two bi-objective integer linear programming formulations for the police patrol routing problem, which differs from the vehicle routing and travelling salesman problems in which not all the nodes in the city must be served, and there is no “depot”. The first formulation is more precise but computationally costly, and the second one is a relaxation that standard integer linear programming solvers can easily solve. The experimental analysis shows that the complete Pareto front can be computed for the relaxed formulation, providing valuable information to solve the precise formulation in future work. In particular, we analyze the number of patrols and the length of the routes they traverse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In theory, for any value of \(\lambda >0\) the solution found is efficient, but in practice numerical errors in floating point operations can result in non-efficient solutions.

  2. 2.

    https://pyomo.readthedocs.io/en/stable/.

References

  1. Achuthan, N., Caccetta, L.: Integer linear programming formulation for a vehicle routing problem. Eur. J. Oper. Res. 52(1), 86–89 (1991). https://doi.org/10.1016/0377-2217(91)90338-V

    Article  MATH  Google Scholar 

  2. Batty, M., et al.: Portugali: smart cities of the future. Eur. Phys. J. Spec. Top. 214(1), 481–518 (2012). https://doi.org/10.1140/epjst/e2012-01703-3

    Article  Google Scholar 

  3. Camero, A., Toutouh, J., Stolfi, D.H., Alba, E.: Evolutionary deep learning for car park occupancy prediction in smart cities. In: Battiti, R., Brunato, M., Kotsireas, I., Pardalos, P.M. (eds.) LION 12 2018. LNCS, vol. 11353, pp. 386–401. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05348-2_32

    Chapter  Google Scholar 

  4. Camero, A., Alba, E.: Smart city and information technology: a review. Cities 93, 84–94 (2019). https://doi.org/10.1016/j.cities.2019.04.014

    Article  Google Scholar 

  5. Christofides, N.: Vehicle routing. Traveling Salesman Probl. (1985)

    Google Scholar 

  6. Cintrano, C., Toutouh, J.: Multiobjective electric vehicle charging station locations in a city scale area: malaga study case. In: Jiménez Laredo, J.L., Hidalgo, J.I., Babaagba, K.O. (eds.) EvoApplications 2022. LNCS, vol. 13224, pp. 584–600. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-02462-7_37

    Chapter  Google Scholar 

  7. Cintrano, C., Toutouh, J., Alba, E.: Citizen centric optimal electric vehicle charging stations locations in a full city: case of malaga. In: Alba, E., et al. (eds.) CAEPIA 2021. LNCS (LNAI), vol. 12882, pp. 247–257. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85713-4_24

    Chapter  Google Scholar 

  8. Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling-salesman problem. J. Oper. Res. Soc. Am. 2(4), 393–410 (1954). https://doi.org/10.1287/opre.2.4.393

    Article  MathSciNet  MATH  Google Scholar 

  9. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manag. Sci. 6(1), 80–91 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dewinter, M., Vandeviver, C., Vander Beken, T., Witlox, F.: Analysing the police patrol routing problem: a review. ISPRS Int. J. Geo-Inf. 9(3), 157 (2020). https://doi.org/10.3390/ijgi9030157

    Article  Google Scholar 

  11. Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, Cham (2005). https://doi.org/10.1007/3-540-27659-9

    Book  MATH  Google Scholar 

  12. Gendreau, M., Laporte, G., Semet, F.: The maximal expected coverage relocation problem for emergency vehicles. J. Oper. Res. Soc. 57, 22–28 (2006)

    Article  MATH  Google Scholar 

  13. Khouadjia, M.R., Sarasola, B., Alba, E., Talbi, E.G., Jourdan, L.: Metaheuristics for dynamic vehicle routing. In: Alba, E., Nakib, A., Siarry, P. (eds.) Metaheuristics for Dynamic Optimization, pp. 265–289. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-30665-5_12

    Chapter  Google Scholar 

  14. Laporte, G.: The vehicle routing problem: An overview of exact and approximate algorithms. Eur. J. Oper. Res. 59(3), 345–358 (1992). https://doi.org/10.1016/0377-2217(92)90192-C

    Article  MATH  Google Scholar 

  15. Mukherjee, T., Gupta, S., Sen, P., Pandey, V., Karmakar, K.: Go-park: a parking lot allocation system in smart cities. In: Singh, M., Gupta, P.K., Tyagi, V., Flusser, J., Ören, T. (eds.) Advances in Computing and Data Sciences, pp. 158–166. Springer, Singapore (2018). https://doi.org/10.1007/978-981-13-1813-9_16

    Chapter  Google Scholar 

  16. OpenStreetMap contributors: Planet dump retrieved from OpenStreetMap. https://www.openstreetmap.org (2017). Accessed 20 Dec 2021

  17. Risso, C., Cintrano, C., Toutouh, J., Nesmachnow, S.: Exact approach for electric vehicle charging infrastructure location: a real case study in málaga, spain. In: Nesmachnow, S., Hernández Callejo, L. (eds) Ibero-American Congress of Smart Cities, pp. 42–57. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-96753-6_4

  18. Rossit, D.G., Toutouh, J., Nesmachnow, S.: Exact and heuristic approaches for multi-objective garbage accumulation points location in real scenarios. Waste Manag. 105, 467–481 (2020)

    Article  MATH  Google Scholar 

  19. Toth, P., Vigo, D.: Vehicle Routing. Society for Industrial and Applied Mathematics, Philadelphia (2014). https://doi.org/10.1137/1.9781611973594

    Book  MATH  Google Scholar 

  20. Toutouh, J., Alba, E.: A swarm algorithm for collaborative traffic in vehicular networks. Veh. Commun. 12, 127–137 (2018)

    Google Scholar 

  21. Toutouh, J., Arellano, J., Alba, E.: Bipred: a bilevel evolutionary algorithm for prediction in smart mobility. Sensors 18(12), 4123 (2018)

    Article  Google Scholar 

  22. Toutouh, J., Chicano, F., Gil-Merino, R.: Code and datasets for the paper “distribution of police patrols as a covering problem in smart cities: fuengirola (spain) use case”. Zenodo. https://doi.org/10.5281/zenodo.7153528

  23. Wang, W., Bao, Y., Long, S.: Rescheduling urban rail transit trains to serve passengers from uncertain delayed high-speed railway trains. Sustainability 14(9), 5718 (2022)

    Article  Google Scholar 

  24. **ong, M., Fei, H., Yan, W.: Research on distribution path of multi-target urban UAV (unmanned aerial vehicle) based on epsilon-constraint method. In: 2021 International Conference CISAI, pp. 632–637 (2021). https://doi.org/10.1109/CISAI54367.2021.00127

  25. Xu, K., Zheng, M.M., Liu, X.: A two-stage robust model for urban food waste collection network under uncertainty. In: 2021 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pp. 824–828 (2021). https://doi.org/10.1109/IEEM50564.2021.9672895

Download references

Acknowledgements

This research is partially funded by the Universidad de Málaga, Andalucía Tech, Consejería de Economía y Conocimiento de la Junta de Andaluía and FEDER under grant numbers UMA18-FEDERJA-003 (PRECOG) and UMA-CEIATECH-07 (DataPol). It was also funded by MCIN/AEI/ 10.13039/501100011033 under grant number PID 2020-116727RB-I00 (HUmove) and TAILOR ICT-48 Network (No 952215) funded by EU Horizon 2020 research and innovation programme. Thanks to the Supercomputing and Bioinnovation Center (SCBI) of the University of Málaga for their provision of computational resources and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Chicano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Toutouh, J., Chicano, F., Gil-Merino, R. (2023). Distribution of Police Patrols as a Covering Problem in Smart Cities: Fuengirola Use Case. In: Nesmachnow, S., Hernández Callejo, L. (eds) Smart Cities. ICSC-CITIES 2022. Communications in Computer and Information Science, vol 1706. Springer, Cham. https://doi.org/10.1007/978-3-031-28454-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28454-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28453-3

  • Online ISBN: 978-3-031-28454-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation