Employing Quasi-SMILES Notation in Development of Nano-QSPR Models for Nanofluids

  • Chapter
  • First Online:
QSPR/QSAR Analysis Using SMILES and Quasi-SMILES

Abstract

Nowadays, variant strategies are proposed and evaluated to find the best scenario for upgrading the high-accurate QSAR/QSPR modeling, particularly on nano-scale. One of the most interesting samples is nanofluids because of high potential in heat transfer applications. In the case of nano-QSPR, some optimum empirical conditions and characteristic features (e.g., size of nanoparticles and temperature) play impressive roles in nanofluids’ properties. Quasi-simplified molecular input-line entry-system (quasi-SMILES) is nominated as valuable linear notation to meet the demands for representation of nanofluids, either chemical structure or defined conditions. The outcomes of nano-QSPR modeling of nanofluids by quasi-SMILES not only make possible the incorporation of molecular structure with experimental conditions in modeling process but also reveal the influence of some molecular features on studied thermophysical properties. Herein, recent studies on the development of predictive models of nanofluids using quasi-SMILES, which is a new trend to estimate the properties of nanofluids, were discussed comprehensively. It is remarkable to point out that the statistical evaluation of proposed models confirmed the predictability power, reliability, and credit of developed models in all reported cases. It is rational that scholars are working on improving QSAR/QSPR modeling; employing quasi-SMILES is an open opportunity to overcome the limitations of conventional molecular representation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (Brazil)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (Brazil)
  • Compact, lightweight edition
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (Brazil)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ANN:

Artificial neural network

ANFIS:

Adaptive neuro-fuzzy inference system

F k :

Extracted feature of quasi-SMILES

AAD:

Average absolute deviation

CORAL:

Correlation and logic

CW(Fk):

Correlation weight of Fk

CCC:

Concordance correlation coefficient

C p :

Isobaric heat capacity

CII :

Correlation intensity index

DTR:

Decision tree regression

DCW:

Optimal descriptor based on quasi-SMILES

EG:

Ethylene glycol

IIC :

Index of ideality of correlation

GBR:

Gradient boosting regression

MAE:

Mean absolute error

MLP :

Multi-layer perceptron

Q 2 :

Leave-one-out cross-validated correlation coefficient

QSAR:

Quantitative structure–activity relationship

QSPR:

Quantitative structure–property relationship

Quasi-SMILES:

Quasi-simplified molecular input-line entry-system

R 2 :

Correlation coefficient

RBF:

Radial basis function

RFR:

Random forest regression

RMSE:

Root mean square error

LDM:

Liquid drop model

LSSVM:

Least square support vector machine

SVR:

Support vector regression

TC:

Thermal conductivity

TF:

Target function

ρ :

Density

φ :

Volume fraction of nanoparticle (%)

bf:

Base fluid

nf:

Nanofluid

p:

Nanoparticle

v:

Volume fraction

Ag:

Silver

Al2O3:

Aluminium oxide

AlN:

Aluminum nitride

Au:

Gold

Bi2O3:

Bismuth (III) oxide

CeO2:

Cerium (IV) oxide

Co3O4:

Cobalt (II,III) oxide

Cr2O3:

Chromium (III) oxide

Cu:

Copper

CuO:

Copper oxide

Dy2O3:

Dysprosium (III) oxide

Fe:

Iron

Fe2O3:

Iron (III) oxide

Fe3O4:

Iron (II,III) oxide

Gd2O3:

Gadolinium (III) oxide

HfO2:

Hafnium (IV) oxide

In2O3:

Indium (III) oxide

La2O3:

Lanthanum oxide

MgO:

Magnesium oxide

Mn2O3:

Manganese (III) oxide

Mn3O4:

Manganese (II,III) oxide

Ni2O3:

Nickel (III) oxide

NiO:

Nickel (II) oxide

Sb2O3:

Antimony oxide

Si3N4:

Silicon nitride

SiC:

Silicon carbide

SiO2:

Silicon dioxide

SnO2:

Tin (IV) oxide

TiN:

Titanium nitride

TiO2:

Titanium dioxide

WO3:

Tungsten (VI) oxide

Y2O3:

Yttrium (III) oxide

Yb2O3:

Ytterbium (III) oxide

ZnO:

Zinc oxide

ZrO2:

Zirconium oxide

References

  1. Hamze S, Cabaleiro D, Estellé P (2021) J Mol Liq 325:115207. https://doi.org/10.1016/j.molliq.2020.115207

    Article  CAS  Google Scholar 

  2. Ghalandari M, Maleki A, Haghighi A, Shadloo MS, Nazari MA, Tlili I (2020) J Mol Liq 313:113476. https://doi.org/10.1016/j.molliq.2020.113476

    Article  CAS  Google Scholar 

  3. Jafari K, Fatemi MH, Estellé P (2021) J Mol Liq 321:114752. https://doi.org/10.1016/j.molliq.2020.114752

    Article  CAS  Google Scholar 

  4. Asadi A, Aberoumand S, Moradikazerouni A, Farzad P, Gaweł Ż, Patrice E, Omid M, Somchai W, Nguyen Hoang M, Arabkoohsar A (2019) Powder Technol 352:209–226. https://doi.org/10.1016/j.powtec.2019.04.054

  5. Asadi A, Pourfattah F, Miklós Szilágyi I, Afrand M (2019) Ultrason Sonochem 58:104701. https://doi.org/10.1016/j.ultsonch.2019.104701

  6. Hajatzadeh Pordanjani A, Aghakhani S, Afrand M, Mahmoudi B, Mahian O, Wongwises S (2019) Energy Convers Manag 198:111886. https://doi.org/10.1016/j.enconman.2019.111886

  7. Rashidi S, Mahian O, Languri EM (2018) J Therm Anal Calorim 131:2027–2039. https://doi.org/10.1007/s10973-017-6773-7

    Article  CAS  Google Scholar 

  8. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H, Wongwises S (2019) Phys Rep 790:1–48. https://doi.org/10.1016/j.physrep.2018.11.004

    Article  CAS  Google Scholar 

  9. Maleki A, Haghighi A, Mahariq I (2021) J Mol Liq 322:114843. https://doi.org/10.1016/j.molliq.2020.114843

    Article  CAS  Google Scholar 

  10. Sharma P, Ramesh K, Parameshwaran R, Deshmukh SS (2022) Case Stud Therm Eng 30:101658. https://doi.org/10.1016/j.csite.2021.101658

    Article  Google Scholar 

  11. Cui W, Cao Z, Li X, Lu L, Ma T, Wang Q (2021) Powder Technol 398:117078. https://doi.org/10.1016/j.powtec.2021.117078

    Article  CAS  Google Scholar 

  12. Novoselska N, Rasulev B, Gajewicz A, Kuz’min V, Puzyn T, Leszczynski J (2014) Nanoscale 6:13986–13993. https://doi.org/10.1039/C4NR03487B

    Article  CAS  Google Scholar 

  13. Jafari K, Fatemi MH (2020) J Therm Anal Calorim 142(3):1335–1344. https://doi.org/10.1007/s10973-019-09215-3

    Article  CAS  Google Scholar 

  14. Jafari K, Fatemi MH (2020) Adv Powder Technol 31:3018–3027. https://doi.org/10.1016/j.apt.2020.05.023

    Article  CAS  Google Scholar 

  15. Toropova AP, Toropov AA (2019) J Mol Struct 1182:141–149. https://doi.org/10.1016/j.molstruc.2019.01.040

    Article  CAS  Google Scholar 

  16. Toropova AP, Toropov AA, Rallo R, Leszczynska D, Leszczynski J (2015) Ecotoxicol Environ Saf 112:39–45. https://doi.org/10.1016/j.ecoenv.2014.10.003

    Article  CAS  PubMed  Google Scholar 

  17. Lubinski L, Urbaszek P, Gajewicz A, Cronin MT, Enoch SJ, Madden JC, Leszczynska D, Leszczynski J, Puzyn T (2013) SAR QSAR Environ Res 24:995–1008. https://doi.org/10.1080/1062936X.2013.840679

    Article  CAS  PubMed  Google Scholar 

  18. Toropova AP, Toropov AA, Veselinović AM, Veselinović JB, Leszczynska D, Leszczynski J (2017) Multi-scale approaches in drug discovery, pp 191–221. https://doi.org/10.1016/B978-0-08-101129-4.00008-4

  19. Toropova AP, Toropov AA, Benfenati E, Castiglioni S, Bagnati R, Passoni A, Zuccato E, Fanelli R (2018) Process Saf Environ Prot 118:227–233. https://doi.org/10.1016/j.psep.2018.07.003

    Article  CAS  Google Scholar 

  20. Toropov AA, Sizochenko N, Toropova AP, Leszczynska D, Leszczynski J (2020) J Mol Liq 317:113929. https://doi.org/10.1016/j.molliq.2020.113929

    Article  CAS  Google Scholar 

  21. Leone C, Bertuzzi EE, Toropova AP, Toropov AA, Benfenati E (2018) Chemosphere 210:52–56. https://doi.org/10.1016/j.chemosphere.2018.06.161

    Article  CAS  PubMed  Google Scholar 

  22. Sizochenko N, Jagiello K, Leszczynski J, Puzyn T (2015) J Phys Chem C 119:25542–25547. https://doi.org/10.1021/acs.jpcc.5b05759

    Article  CAS  Google Scholar 

  23. Sizochenko N, Syzochenko M, Gajewicz A, Leszczynski J, Puzyn T (2017) J Phys Chem C 121:1910–1917. https://doi.org/10.1021/acs.jpcc.6b08850

    Article  CAS  Google Scholar 

  24. Sizochenko N, Kar S, Syzochenko M, Leszczynski J (2018) Int J Quant Struct Relat 4:18–27. https://doi.org/10.4018/ijqspr.2019010102

    Article  CAS  Google Scholar 

  25. Toropov A, Sizochenko N, Toropova A, Leszczynski J (2018) Nanomaterials 8:243. https://doi.org/10.3390/nano8040243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jafari K, Fatemi MH, Toropova AP, Toropov AA (2022) Chemom Intell Lab Syst 222:104500. https://doi.org/10.1016/j.chemolab.2022.104500

    Article  CAS  Google Scholar 

  27. Pordanjani AH, Aghakhani S, Afrand M, Sharifpur M, Meyer JP, Xu H, Ali HM, Karimi N, Cheraghian G (2021) J Clean Prod 320:128573. https://doi.org/10.1016/j.jclepro.2021.128573

    Article  CAS  Google Scholar 

  28. Jafari K, Fatemi MH, Toropova AP, Toropov AA (2020) Chem Phys Lett 754:137614. https://doi.org/10.1016/j.cplett.2020.137614

    Article  CAS  Google Scholar 

  29. Pak BC, Cho YI (1998) Exp Heat Transf A J Therm Energy Gener Transp Stor Convers 11:151–170. https://doi.org/10.1080/08916159808946559

Download references

Declaration of Competing Interest

The authors declare that they have not any known personal relationships or competing financial interests that could have appeared to effect on this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Fatemi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jafari, K., Fatemi, M.H. (2023). Employing Quasi-SMILES Notation in Development of Nano-QSPR Models for Nanofluids. In: Toropova, A.P., Toropov, A.A. (eds) QSPR/QSAR Analysis Using SMILES and Quasi-SMILES. Challenges and Advances in Computational Chemistry and Physics, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-031-28401-4_15

Download citation

Publish with us

Policies and ethics

Navigation