The CORAL Software as a Tool to Develop Models for Nanomaterials’ Endpoints

  • Chapter
  • First Online:
QSPR/QSAR Analysis Using SMILES and Quasi-SMILES

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 33))

  • 233 Accesses

Abstract

This chapter discusses the evolution of the so-called quasi-SMILES. The traditional simplified molecular-input line-entry system (SMILES) is a string of characters conveying information about the structure of molecules. Quasi-SMILES is a string of characters that can convey codes reflecting the structure of molecules and the conditions for conducting chemical or biochemical experiments. Several examples demonstrate the similarity in reporting data on individual nanomaterials and data on two or more nanomaterials subjected to the same type of experiment. The possibility of gradual expansion of the scope of application of quasi-SMILES, as well as the possibility of using quasi-SMILES as input information for the CORAL software (abbreviation CORrelation And Logic) when building models of physicochemical and biochemical phenomena for nanomaterials, is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. GarcĂ­a-Hernndez DA, Iglesias-Groth S, Acosta-Pulido JA, Manchado A, GarcĂ­a-Lario P, Stanghellini L, Villaver E, Shaw RA, Cataldo F (2011) Astrophys J Lett 737(2):L30. https://doi.org/10.1088/2041-8205/737/2/L30

  2. Iglesias-Groth S, Cataldo F, Manchado A (2011) Mon Not R Astron Soc 413(1):213–222. https://doi.org/10.1111/j.1365-2966.2011.18124.x

  3. Cami J, Bernard-Salas J, Peeters E, Malek SE (2010) Science 329(5996):1180–1182. https://doi.org/10.1126/science.1192035

    Article  CAS  PubMed  Google Scholar 

  4. Barhoum A, GarcĂ­a-Betancourt ML, Jeevanandam J, Hussien EA, Mekkawy SA, Mostafa M, Omran MM, Abdalla MS, Bechelany M (2022) Nanomaterials 12(2):177. https://doi.org/10.3390/nano12020177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pérez-Arantegui J, Larrea A (2003) TrAC Trends Anal Chem 22(5):327–329. https://doi.org/10.1016/S0165-9936(03)00502-8

  6. Atlas of Sciences. https://atlasofscience.org/the-coral-software-as-spyglass-to-detect-coral-reefs-in-ocean-of-nanotechnologies/. Accessed 29 July 2022

  7. Villaverde JJ, Sevilla-Morán B, López-Goti C, Alonso-Prados JL, Sandín-España P (2018) Sci Total Environ 634:1530–1539. https://doi.org/10.1016/j.scitotenv.2018.04.033s

  8. Hellström T (2009) Technol Soc 31(3):325–331. https://doi.org/10.1016/j.techsoc.2009.06.002

    Article  Google Scholar 

  9. OECD (2020) Guidance document for the testing of dissolution and dispersion stability of nanomaterials and the use of the data for further environmental testing and assessment strategies, No. 318. ENV/JM/MONO(2020)9

    Google Scholar 

  10. Mu Y, Wu F, Zhao Q, Ji R, Qie Y, Zhou Y, Hu Y, Pang C, Hristozov D, Giesy JP, **ng B (2016) Nanotoxicology 10(9):1207–1214. https://doi.org/10.1080/17435390.2016.1202352

    Article  CAS  PubMed  Google Scholar 

  11. Lubinski L, Urbaszek P, Gajewicz A, Cronin MTD, Enoch SJ, Madden JC, Leszczynska D, Leszczynski J, Puzyn T (2013) SAR QSAR Environ Res 24(12):995–1008. https://doi.org/10.1080/1062936X.2013.840679

    Article  CAS  PubMed  Google Scholar 

  12. Chugh H, Sood D, Chandra I, Tomar V, Dhawan G, Chandra R (2018) Artif Cells Nanomed Biotechnol 46(sup1):1210–1220. https://doi.org/10.1080/21691401.2018.1449118

    Article  CAS  PubMed  Google Scholar 

  13. Marchesan S, Prato M (2013) ACS Med Chem Lett 4(2):147–149. https://doi.org/10.1021/ml3003742

    Article  CAS  PubMed  Google Scholar 

  14. Yamakoshi Y, Umezawa N, Ryu A, Arakane K, Miyata N, Goda Y, Masumizu T, Nagano T (2003) J Am Chem Soc 125(42):12803–12809. https://doi.org/10.1021/ja0355574

    Article  CAS  PubMed  Google Scholar 

  15. Castro E, Garcia AH, Zavala G, Echegoyen L (2017) J Mater Chem B 5(32):6523–6535. https://doi.org/10.1039/c7tb00855d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Anilkumar P, Lu F, Cao L, Luo PG, Liu J-H, Sahu S, Tackett KN, Wang Y, Sun Y-P (2011) Curr Med Chem 18(14):2045–2059. https://doi.org/10.2174/092986711795656225

    Article  CAS  PubMed  Google Scholar 

  17. Sacchetti C, Motamedchaboki K, Magrini A, Palmieri G, Mattei M, Bernardini S, Rosato N, Bottini N, Bottini M (2013) ACS Nano 7(3):1974–1989. https://doi.org/10.1021/nn400409h

    Article  CAS  PubMed  Google Scholar 

  18. Bhirde AA, Patel S, Sousa AA, Patel V, Molinolo AA, Ji Y, Leapman RD, Gutkind JS, Rusling JF (2010) Nanomedicine 5(10):1535–1546. https://doi.org/10.2217/nnm.10.90

    Article  CAS  PubMed  Google Scholar 

  19. Benjamin SR, Vilela RS, de Camargo HS, Guedes MIF, Fernandes KF, Colmati F (2018) Int J Electrochem Sci 13(1):563–586. https://doi.org/10.20964/2018.01.51

    Article  CAS  Google Scholar 

  20. Wagay JA, Nayik GA, Wani SA, Mir RA, Ahmad MA, Rahman QI, Vyas D (2019) J Food Meas Charact 13(3):1805–1819. https://doi.org/10.1007/s11694-019-00099-3

    Article  Google Scholar 

  21. Schwaminger SP, Fraga-García P, Selbach F, Hein FG, Fuß EC, Surya R, Roth H-C, Blank-Shim SA, Wagner FE, Heissler S, Berensmeier S (2017) Adsorption 23(2–3):281–292. https://doi.org/10.1007/s10450-016-9849-y

    Article  CAS  Google Scholar 

  22. Zhong L, Yu Y, Lian H-Z, Hu X, Fu H, Chen Y-J (2017) J Nanopart Res 19(11):375. https://doi.org/10.1007/s11051-017-4064-7

    Article  CAS  Google Scholar 

  23. Yong K-T, Law W-C, Hu R, Ye L, Liu L, Swihart MT, Prasad PN (2013) Chem Soc Rev 42(3):1236–1250. https://doi.org/10.1039/c2cs35392j

    Article  CAS  PubMed  Google Scholar 

  24. Zhang H, Yee D, Wang C (2008) Nanomedicine 3(1):83–91. https://doi.org/10.2217/17435889.3.1.83

    Article  CAS  PubMed  Google Scholar 

  25. Raj S, Jose S, Sumod US, Sabitha M (2012) J Pharm Bioallied Sci 4(3):186–193. https://doi.org/10.4103/0975-7406.99016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nohynek GJ, Dufour EK, Roberts MS (2008) Skin Pharmacol Physiol 21(3):136–149. https://doi.org/10.1159/000131078

    Article  CAS  PubMed  Google Scholar 

  27. Lu P-J, Huang S-C, Chen Y-P, Chiueh L-C, Shih DY-C (2015) J Food Drug Anal 23(3):587–594. https://doi.org/10.1016/j.jfda.2015.02.009

  28. Auffan M, Pedeutour M, Rose J, Masion A, Ziarelli F, Borschneck D, Chaneac C, Botta C, Chaurand P, Labille J, Bottero J-Y (2010) Environ Sci Technol 44(7):2689–2694. https://doi.org/10.1021/es903757q

    Article  CAS  PubMed  Google Scholar 

  29. Mihranyan A, Ferraz N, Strømme M (2012) Prog Mater Sci 57(5):875–910. https://doi.org/10.1016/j.pmatsci.2011.10.001

    Article  CAS  Google Scholar 

  30. Benn TM, Westerhoff P, Herckes P (2011) Environ Pollut 159(5):1334–1342. https://doi.org/10.1016/j.envpol.2011.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fytianos G, Rahdar A, Kyzas GZ (2020) Nanomaterials 10(5):979. https://doi.org/10.3390/nano10050979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jiang T, Song X, Mu X, Cheang UK (2022) Sci Rep 12(1):13080. https://doi.org/10.1038/s41598-022-17053-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Puzyn T, Leszczynska D, Leszczynski J (2009) Small 5(22):2494–2509. https://doi.org/10.1002/smll.200900179

    Article  CAS  PubMed  Google Scholar 

  34. Marchese Robinson RL, Cronin MTD, Richarz A-N, Rallo R (2015) Beilstein J Nanotechnol 6(1):1978–1999. https://doi.org/10.3762/bjnano.6.202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Panneerselvam S, Choi S (2014) Int J Mol Sci 15(5):7158–7182. https://doi.org/10.3390/ijms15057158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Melagraki G, Afantitis A (2014) RSC Adv 4(92):50713–50725. https://doi.org/10.1039/c4ra07756c

    Article  CAS  Google Scholar 

  37. Puzyn T, Rasulev B, Gajewicz A, Hu X, Dasari TP, Michalkova A, Hwang H-M, Toropov A, Leszczynska D, Leszczynski J (2011) Nat Nanotechnol 6(3):175–178. https://doi.org/10.1038/nnano.2011.10

    Article  CAS  PubMed  Google Scholar 

  38. Fourches D, Pu D, Tassa C, Weissleder R, Shaw SY, Mumper RJ, Tropsha A (2010) ACS Nano 4(10):5703–5712. https://doi.org/10.1021/nn1013484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Doweyko AM (2008) J Comput Aided Mol Des 22(2):81–89. https://doi.org/10.1007/s10822-007-9162-7

    Article  CAS  PubMed  Google Scholar 

  40. Maggiora GM (2006) J Chem Inf Model 46(4):1535. https://doi.org/10.1021/ci060117s

    Article  CAS  PubMed  Google Scholar 

  41. Doweyko AM (2004) J Comput Aided Mol Des 18(7–9):587–596. https://doi.org/10.1007/s10822-004-4068-0

    Article  CAS  PubMed  Google Scholar 

  42. Johnson SR (2008) J Chem Inf Model 48(1):25–26. https://doi.org/10.1021/ci700332k

    Article  CAS  PubMed  Google Scholar 

  43. Dearden JC, Cronin MTD, Kaiser KLE (2009) SAR QSAR Environ Res 20(3–4):241–266. https://doi.org/10.1080/10629360902949567

    Article  CAS  PubMed  Google Scholar 

  44. Scior T, Medina-Franco JL, Do Q-T, Martínez-Mayorga K, Yunes Rojas JA, Bernard P (2009) Curr Med Chem 16(32):4297–4313. https://doi.org/10.2174/092986709789578213

  45. Lee Y, von Gunten U (2012) Water Res 46(19):6177–6195. https://doi.org/10.1016/j.watres.2012.06.006

    Article  CAS  PubMed  Google Scholar 

  46. Papa E, Villa F, Gramatica P (2005) J Chem Inf Model 45(5):1256–1266. https://doi.org/10.1021/ci0502121

    Article  CAS  PubMed  Google Scholar 

  47. Toropova AP, Toropov AA, Martyanov SE, Benfenati E, Gini G, Leszczynska D, Leszczynski J (2012) Chemom Intell Lab Syst 110(1):177–181. https://doi.org/10.1016/j.chemolab.2011.10.005

    Article  CAS  Google Scholar 

  48. Toropova AP, Toropov AA, Benfenati E, Gini G (2011) Chemom Intell Lab Syst 105(2):215–219. https://doi.org/10.1016/j.chemolab.2010.12.007

    Article  CAS  Google Scholar 

  49. Toropov AA, Toropova AP, Benfenati E (2010) Mol Divers 14(1):183–192. https://doi.org/10.1007/s11030-009-9156-6

    Article  CAS  PubMed  Google Scholar 

  50. Toropov AA, Toropova AP, Kudyshkin VO (2022) Struct Chem 33(2):617–624. https://doi.org/10.1007/s11224-021-01875-y

    Article  CAS  Google Scholar 

  51. Sivaraman N, Srinivasan TG, Vasudeva Rao PR, Natarajan R (2001) J Chem Inf Comput Sci 41(4):1067–1074. https://doi.org/10.1021/ci010003a

    Article  CAS  PubMed  Google Scholar 

  52. Toropov AA, Rasulev BF, Leszczynska D, Leszczynski J (2008) Chem Phys Lett 457(4–6):332–336. https://doi.org/10.1016/j.cplett.2008.04.013

    Article  CAS  Google Scholar 

  53. Villaverde JJ, Sevilla-Morán B, López-Goti C, Alonso-Prados JL, Sandín-España P (2020) In: Shukla V, Kumar N (eds) Environmental concerns and sustainable development, air, water and energy resources, vol 1. Springer, Singapore, pp 1–27

    Google Scholar 

  54. Stoudmann N, Nowack B, Som C (2019) Environ Sci Nano 6(8):2520–2531. https://doi.org/10.1039/c9en00472f

    Article  CAS  Google Scholar 

  55. Chopra SS, Bi Y, Brown FC, Theis TL, Hristovski KD, Westerhoff P (2019) Environ Sci Nano 6(11):3256–3267. https://doi.org/10.1039/c9en00603f

  56. Organization for Economic Co-operation and Development (OECD) (2014) Ecotoxicology and environmental fate of manufactured nanomaterials. In: Series on the safety of manufactured nanomaterials, ENV/JM/MONO(2014)1, No. 40. OECD, Paris. Accessed 12 Aug 2022

    Google Scholar 

  57. Organization for Economic Co-operation and Development (OECD) (2020) Guidance document for the testing of dissolution and dispersion stability of nanomaterials and the use of the data for further environmental testing and assessment strategies. In: OECD guidelines for the testing of chemicals, ENV/JM/MONO(2020)9, No. 318. OECD, Paris. Accessed 12 Aug 2022

    Google Scholar 

  58. Camacho J, Smilde AK, Saccenti E, Westerhuis JA (2020) Chemom Intell Lab Syst 196:103907. https://doi.org/10.1016/j.chemolab.2019.103907

    Article  CAS  Google Scholar 

  59. Siao MD, Shen WC, Chen RS, Chang ZW, Shih MC, Chiu YP, Cheng C-M (2018) Nat Commun 9(1):1442. https://doi.org/10.1038/s41467-018-03824-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Toropov AA, Toropova AP, Benfenati E, Leszczynska D, Leszczynski J (2009) J Math Chem 46(4):1232–1251. https://doi.org/10.1007/s10910-008-9514-0

    Article  CAS  Google Scholar 

  61. Toropova AP, Toropov AA, Benfenati E, Gini G, Leszczynska D, Leszczynski J (2011) Mol Divers 15(1):249–256. https://doi.org/10.1007/s11030-010-9245-6

    Article  CAS  PubMed  Google Scholar 

  62. Toropova AP, Toropov AA (2019) J Mol Struct 1182:141–149. https://doi.org/10.1016/j.molstruc.2019.01.040

    Article  CAS  Google Scholar 

  63. Mashino T, Shimotohno K, Ikegami N, Nishikawa D, Okuda K, Takahashi K, Nakamura S, Mochizuki M (2005) Bioorg Med Chem Lett 15(4):1107–1109. https://doi.org/10.1016/j.bmcl.2004.12.030

    Article  CAS  PubMed  Google Scholar 

  64. Toropova AP, Toropov AA, Benfenati E (2019) Fuller Nanotub Carbon Nanostruct 27(10):816–821. https://doi.org/10.1080/1536383X.2019.1649659

    Article  CAS  Google Scholar 

  65. Marchesan S, Da Ros T, Spalluto G, Balzarini J, Prato M (2005) Bioorg Med Chem Lett 15(15):3615–3618. https://doi.org/10.1016/j.bmcl.2005.05.069

    Article  CAS  PubMed  Google Scholar 

  66. Salahinejad M, Zolfonoun E (2013) J Nanopart Res 15(11):2028. https://doi.org/10.1007/s11051-013-2028-0

    Article  CAS  Google Scholar 

  67. Yilmaz H, Rasulev B, Leszczynski J (2015) Nanomaterials 5(2):778–791. https://doi.org/10.3390/nano5020778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Salahinejad M (2015) Curr Top Med Chem 15(18):1868–1886. https://doi.org/10.2174/1568026615666150506145017

    Article  CAS  PubMed  Google Scholar 

  69. Toropov AA, Toropova AP (2015) Chemosphere 124(1):40–46. https://doi.org/10.1016/j.chemosphere.2014.10.067

    Article  CAS  PubMed  Google Scholar 

  70. Toropov AA, Toropova AP (2015) Chemosphere 139:18–22. https://doi.org/10.1016/j.chemosphere.2015.05.042

    Article  CAS  PubMed  Google Scholar 

  71. Toropova AP, Toropov AA (2015) Mini Rev Med Chem 15(8):608–621. https://doi.org/10.2174/1389557515666150219121652

    Article  CAS  PubMed  Google Scholar 

  72. Toropova AP, Toropov AA, Benfenati E, Leszczynska D, Leszczynski J (2010) J Math Chem 48(4):959–987. https://doi.org/10.1007/s10910-010-9719-x

    Article  CAS  Google Scholar 

  73. Toropov AA, Toropova AP (2014) Chemosphere 104:262–264. https://doi.org/10.1016/j.chemosphere.2013.10.079

    Article  CAS  PubMed  Google Scholar 

  74. Toropov AA, Toropova AP, Veselinović AM, Veselinović JB, Nesmerak K, Raska I Jr, Duchowicz PR, Castro EA, Kudyshkin VO, Leszczynska D, Leszczynski J (2015) Comb Chem High Throughput Screen 18(4):376–386. https://doi.org/10.2174/1386207318666150305125044

    Article  CAS  PubMed  Google Scholar 

  75. Toropov AA, Rallo R, Toropova AP (2015) Curr Top Med Chem 15(18):1837–1844. https://doi.org/10.2174/1568026615666150506152000

    Article  CAS  PubMed  Google Scholar 

  76. Fjodorova N, Novič M, Venko K, Drgan V, Rasulev B, Türker Saçan M, Sağ Erdem S, Tugcu G, Toropova AP, Toropov AA (2022) Comput Struct Biotechnol J 20:913–924. https://doi.org/10.1016/j.csbj.2022.02.006

  77. Weininger D (1988) J Chem Inf Comput Sci 28(1):31–36. https://doi.org/10.1021/ci00057a005

    Article  CAS  Google Scholar 

  78. Lotfi S, Ahmadi S, Zohrabi P (2020) Struct Chem 31(6):2257–2270. https://doi.org/10.1007/s11224-020-01568-y

    Article  CAS  Google Scholar 

  79. Chopdar KS, Dash GC, Mohapatra PK, Nayak B, Raval MK (2020) J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2020.1867643

    Article  Google Scholar 

  80. Achary PGR, Toropova AP, Toropov AA (2019) Int Food Res J 122:40–46. https://doi.org/10.1016/j.foodres.2019.03.067

    Article  CAS  Google Scholar 

  81. Pogány P, Arad N, Genway S, Pickett SD (2019) J Chem Inf Model 59(3):1136–1146. https://doi.org/10.1021/acs.jcim.8b00626

    Article  CAS  PubMed  Google Scholar 

  82. Fatemi MH, Malekzadeh H (2015) J Iran Chem Soc 12(3):405–412. https://doi.org/10.1007/s13738-014-0497-4

    Article  CAS  Google Scholar 

  83. Toropova AP, Toropov AA, Rasulev BF, Benfenati E, Gini G, Leszczynska D, Leszczynski J (2012) Struct Chem 23(6):1873–1878. https://doi.org/10.1007/s11224-012-9996-z

    Article  CAS  Google Scholar 

  84. Toropov AA, Toropova AP, Martyanov SE, Benfenati E, Gini G, Leszczynska D, Leszczynski J (2012) Chemom Intell Lab Syst 112:65–70. https://doi.org/10.1016/j.chemolab.2011.12.003

    Article  CAS  Google Scholar 

  85. Toropov AA, Toropova AP, Martyanov SE, Benfenati E, Gini G, Leszczynska D, Leszczynski J (2011) Chemom Intell Lab Syst 109(1):94–100. https://doi.org/10.1016/j.chemolab.2011.07.008

    Article  CAS  Google Scholar 

  86. Toropov AA, Benfenati E (2007) Comput Biol Chem 31(1):57–60. https://doi.org/10.1016/j.compbiolchem.2007.01.003

    Article  CAS  PubMed  Google Scholar 

  87. Toropova AP, Toropov AA, Veselinović AM, Veselinović JB, Benfenati E, Leszczynska D, Leszczynski J (2016) Ecotoxicol Environ Saf 124:32–36. https://doi.org/10.1016/j.ecoenv.2015.09.038

    Article  CAS  PubMed  Google Scholar 

  88. Toropova AP, Toropov AA, Rallo R, Leszczynska D, Leszczynski J (2016) Int J Environ Res 10(1):59–64

    CAS  Google Scholar 

  89. Ahmadi S (2020) Chemosphere 242:125192. https://doi.org/10.1016/j.chemosphere.2019.125192

    Article  CAS  PubMed  Google Scholar 

  90. Cassano A, Robinson RLM, Palczewska A, Puzyn T, Gajewicz A, Tran L, Manganelli S, Cronin MTD (2016) ATLA Altern Lab Anim 44(6):533–556. https://doi.org/10.1177/026119291604400603

    Article  PubMed  Google Scholar 

  91. Toropov AA, Toropova AP, Leszczynska D, Leszczynski J (2019) BioSystems 181:51–57. https://doi.org/10.1016/j.biosystems.2019.04.008

    Article  CAS  PubMed  Google Scholar 

  92. Toropova AP, Toropov AA, Rallo R, Leszczynska D, Leszczynski J (2015) Ecotoxicol Environ Saf 112:39–45. https://doi.org/10.1016/j.ecoenv.2014.10.003

    Article  CAS  PubMed  Google Scholar 

  93. Toropova AP, Toropov AA, Manganelli S, Leone C, Baderna D, Benfenati E, Fanelli R (2016) NanoImpact 1:60–64. https://doi.org/10.1016/j.impact.2016.04.003

    Article  Google Scholar 

  94. Achary PGR, Begum S, Toropova AP, Toropov AA (2016) Mater Discov 5:22–28. https://doi.org/10.1016/j.md.2016.12.003

    Article  Google Scholar 

  95. Toropov AA, Achary PGR, Toropova AP (2016) Chem Phys Lett 660:107–110. https://doi.org/10.1016/j.cplett.2016.08.018

    Article  CAS  Google Scholar 

  96. Toropov AA, Kjeldsen F, Toropova AP (2022) Chemosphere 303:135086. https://doi.org/10.1016/j.chemosphere.2022.135086

    Article  CAS  PubMed  Google Scholar 

  97. Ahmadi S, Aghabeygi S, Farahmandjou M, Azimi N (2021) Struct Chem 32(5):1893–1905. https://doi.org/10.1007/s11224-021-01748-4

    Article  CAS  Google Scholar 

  98. Toropova AP, Toropov AA, Leszczynski J, Sizochenko N (2021) Environ Toxicol Pharmacol 86:103665. https://doi.org/10.1016/j.etap.2021.103665

    Article  CAS  PubMed  Google Scholar 

  99. Toropov AA, Toropova AP (2021) Sci Total Environ 772:145532. https://doi.org/10.1016/j.scitotenv.2021.145532

    Article  CAS  PubMed  Google Scholar 

  100. Toropova AP, Toropov AA, Leszczynska D, Leszczynski J (2021) Comput Biol Med 136:104720. https://doi.org/10.1016/j.compbiomed.2021.104720

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by ONTOX, grant agreement 963845 of the European Commission under the Horizon 2020 research and innovation framework program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey A. Toropov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Toropova, A.P., Toropov, A.A. (2023). The CORAL Software as a Tool to Develop Models for Nanomaterials’ Endpoints. In: Toropova, A.P., Toropov, A.A. (eds) QSPR/QSAR Analysis Using SMILES and Quasi-SMILES. Challenges and Advances in Computational Chemistry and Physics, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-031-28401-4_14

Download citation

Publish with us

Policies and ethics

Navigation