Clay-Based Composites and Nanocomposites for Drug Delivery

  • Chapter
  • First Online:
Carbon Nanostructures in Biomedical Applications

Part of the book series: Advances in Material Research and Technology ((AMRT))

  • 250 Accesses

Abstract

The health advantages of clays for humans and animals are widely documented, and clays have been utilized in traditional medicine since antiquity. Clay-based composites and nanocomposites are expected to be the next-generation materials for a wide range of biomedical applications due to the improved surface contacts of silicate nanoparticles and polymer chains. This chapter addresses the use of clays in nanoarchitectonic drug delivery vehicles that are targeted and stimuli-responsive. The advantages and disadvantages of using these nanomaterials are also discussed, and directions for future study are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 179.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 179.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bilotti, E.: Polymer/Sepiolite Clay Nanocomposites. Queen Mary, University of London (2009)

    Google Scholar 

  2. Carretero, M.I.: Clay minerals and their beneficial effects upon human health. A review. Appl. Clay Sci. 21, 155–163 (2002)

    Article  CAS  Google Scholar 

  3. Williams, L.B., Haydel, S.E.: Evaluation of the medicinal use of clay minerals as antibacterial agents. Int. Geol. Rev. 52, 745–770 (2010)

    Article  Google Scholar 

  4. Khurana, I.S., Kaur, S., Kaur, H., Khurana, R.K.: Multifaceted role of clay minerals in pharmaceuticals. Future Sci. OA 1 (2015)

    Google Scholar 

  5. Hulla, J., Sahu, S., Hayes, A.: Nanotechnology: history and future. Hum. Exp. Toxicol. 34, 1318–1321 (2015)

    Article  CAS  Google Scholar 

  6. My Tran, N., Thanh Hoai Ta, Q., Sreedhar, A., Noh, J.-S.: Ti3C2Tx MXene playing as a strong methylene blue adsorbent in wastewater. Appl. Surf. Sci. 537, 148006 (2021)

    Google Scholar 

  7. Anh Tran, V., Nhu Quynh, L.T., Thi Vo, T.-T., Nguyen, P.A., Don, T.N., Vasseghian, Y., et al.: Experimental and computational investigation of a green Knoevenagel condensation catalyzed by zeolitic imidazolate framework-8. Environ. Res. 204, 112364 (2021)

    Google Scholar 

  8. Tran, V.A., Do, H.H., Le, V.T., Vasseghian, Y., Vo, V., Ahn, S.H., et al.: Metal-organic-framework-derived metals and metal compounds as electrocatalysts for oxygen evolution reaction: a review. Int. J. Hydrogen Energy 47, 19590–19608 (2021)

    Article  Google Scholar 

  9. Khatoon, N., Chu, M.Q., Zhou, C.H.: Nanoclay-based drug delivery systems and their therapeutic potentials. J. Mater. Chem. B 8, 7335–7351 (2020)

    Article  CAS  Google Scholar 

  10. Anh Tran, V., Huu Do, H., Duy Cam Ha, T., Hyun Ahn, S., Kim, M.-G., Young Kim, S., et al.: Metal-organic framework for lithium and sodium-ion batteries: progress and perspectivez. Fuel 319, 123856 (2022)

    Google Scholar 

  11. Damato, A., Vianello, F., Novelli, E., Balzan, S., Gianesella, M., Giaretta, E., et al.: Comprehensive review on the interactions of clay minerals with animal physiology and production. Front. Vet. Sci. 571 (2022)

    Google Scholar 

  12. Yariv, S., Cross, H.: Organo-Clay Complexes and Interactions. CRC Press (2001)

    Google Scholar 

  13. Jlassi, K., Krupa, I., Chehimi, M.M.: Chapter 1—overview: clay preparation, properties, modification. In: Jlassi, K., Chehimi, M.M., Thomas, S. (eds) Clay-Polymer Nanocomposites, pp. 1–28. Elsevier (2017)

    Google Scholar 

  14. Viseras, C., Aguzzi, C., Cerezo, P., Bedmar, M.C.: Biopolymer–clay nanocomposites for controlled drug delivery. Mater. Sci. Technol. 24, 1020–1026 (2008)

    Article  CAS  Google Scholar 

  15. Ruiz-Hitzky, E., Darder, M., Fernandes, F.M., Wicklein, B., Alcântara, A.C.S., Aranda, P.: Fibrous clays based bionanocomposites. Progress Polym. Sci. 38, 1392–1414 (2013)

    Google Scholar 

  16. Nakato, T., Nakano, Y., Mouri, E.: Effects of sol–gel transition of clay colloids on the spectroscopic behavior of cationic dye adsorbed on the clay particles. Appl. Clay Sci. 118, 29–37 (2015)

    Article  CAS  Google Scholar 

  17. Franco-Urquiza, E.A.: Clay-based polymer nanocomposites: essential work of fracture. Polymers 13, 2399 (2021)

    Google Scholar 

  18. Irani, M., Fan, M., Ismail, H., Tuwati, A., Dutcher, B., Russell, A.G.: Modified nanosepiolite as an inexpensive support of tetraethylenepentamine for CO2 sorption. Nano Energy 11, 235–246 (2015)

    Article  CAS  Google Scholar 

  19. Karamane, M., Raihane, M., Tasdelen, M.A., Uyar, T., Lahcini, M., Ilsouk, M., et al.: Preparation of fluorinated methacrylate/clay nanocomposite via in-situ polymerization: Characterization, structure, and properties. J. Polym. Sci., Part A: Polym. Chem. 55, 411–418 (2017)

    Article  CAS  Google Scholar 

  20. Lahcini, M., Elhakioui, S., Szopinski, D., Neuer, B., El Kadib, A., Scheliga, F., et al.: Harnessing synergies in tin-clay catalyst for the preparation of poly(ε-caprolactone)/halloysite nanocomposites. Eur. Polym. J. 81, 1–11 (2016)

    Article  CAS  Google Scholar 

  21. Jlassi, K., Benna-Zayani, M., Chehimi, M.M., Yagci, Y.: Efficient photoinduced In situ preparation of clay/poly(glycidyl methacrylate) nanocomposites using hydrogen-donor silane. J. Polym. Sci., Part A: Polym. Chem. 53, 800–808 (2015)

    Article  CAS  Google Scholar 

  22. Wang, R., Peng, Y., Zhou, M., Shou, D.: Smart montmorillonite-polypyrrole scaffolds for electro-responsive drug release. Appl. Clay Sci. 134, 50–54 (2016)

    Article  CAS  Google Scholar 

  23. Rao, Y.: Gelatin–clay nanocomposites of improved properties. Polymer 48, 5369–5375 (2007)

    Article  CAS  Google Scholar 

  24. Li, L., Mak, K., Shi, J., Koon, H., Leung, C., Wong, C., et al.: Comparative in vitro cytotoxicity study on uncoated magnetic nanoparticles: effects on cell viability, cell morphology, and cellular uptake. J. Nanosci. Nanotechnol. 12, 9010–9017 (2012)

    Article  CAS  Google Scholar 

  25. Gan, C., Hu, H., Meng, Z., Zhu, X., Gu, R., Wu, Z., et al.: Characterization and hemostatic potential of two kaolins from southern China. Molecules 24, 3160 (2019)

    Article  CAS  Google Scholar 

  26. Yah, W.O., Takahara, A., Lvov, Y.M.: Selective modification of halloysite lumen with octadecylphosphonic acid: new inorganic tubular micelle. J. Am. Chem. Soc. 134, 1853–1859 (2012)

    Article  CAS  Google Scholar 

  27. Veerabadran, N.G., Mongayt, D., Torchilin, V., Price, R.R., Lvov, Y.M.: Organized shells on clay nanotubes for controlled release of macromolecules. Macromol. Rapid Commun. 30, 99–103 (2009)

    Article  CAS  Google Scholar 

  28. Köhler, A.R., Som, C., Helland, A., Gottschalk, F.: Studying the potential release of carbon nanotubes throughout the application life cycle. J. Clean. Prod. 16, 927–937 (2008)

    Article  Google Scholar 

  29. Satish, S., Tharmavaram, M., Rawtani, D.: Halloysite nanotubes as a nature’s boon for biomedical applications. Nanobiomedicine 6, 1849543519863625 (2019)

    Article  Google Scholar 

  30. Baek, M., Lee, J.-A., Choi, S.-J.: Toxicological effects of a cationic clay, montmorillonite in vitro and in vivo. Mol. Cell. Toxicol. 8, 95–101 (2012)

    Article  CAS  Google Scholar 

  31. Zhang, Y., Long, M., Huang, P., Yang, H., Chang, S., Hu, Y., et al.: Intercalated 2D nanoclay for emerging drug delivery in cancer therapy. Nano Res. 10, 2633–2643 (2017)

    Article  CAS  Google Scholar 

  32. Zhang, Y., Long, M., Huang, P., Yang, H., Chang, S., Hu, Y., et al.: Emerging integrated nanoclay-facilitated drug delivery system for papillary thyroid cancer therapy. Sci. Rep. 6, 33335 (2016)

    Article  CAS  Google Scholar 

  33. Koosha, M., Mirzadeh, H., Shokrgozar, M.A., Farokhi, M.: Nanoclay-reinforced electrospun chitosan/PVA nanocomposite nanofibers for biomedical applications. RSC Adv. 5, 10479–10487 (2015)

    Article  CAS  Google Scholar 

  34. Yang, G., Gong, H., Qian, X., Tan, P., Li, Z., Liu, T., et al.: Mesoporous silica nanorods intrinsically doped with photosensitizers as a multifunctional drug carrier for combination therapy of cancer. Nano Res. 8, 751–764 (2015)

    Article  CAS  Google Scholar 

  35. Lvov, Y., Wang, W., Zhang, L., Fakhrullin, R.: Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv. Mater. 28, 1227–1250 (2016)

    Article  CAS  Google Scholar 

  36. Levis, S., Deasy, P.: Characterisation of halloysite for use as a microtubular drug delivery system. Int. J. Pharm. 243, 125–134 (2002)

    Article  CAS  Google Scholar 

  37. Banik, N., Iman, M., Hussain, A., Ramteke, A., Boruah, R., Maji, T.K.: Soy flour nanoparticles for controlled drug delivery: effect of crosslinker and montmorillonite (MMT). New J. Chem. 37, 3981–3990 (2013)

    Article  CAS  Google Scholar 

  38. Tabak, A., Afsin, B., Aygun, S., Koksal, E.: Structural characteristics of organo-modified bentonites of different origin. J. Therm. Anal. Calorim. 87, 377–382 (2007)

    Article  Google Scholar 

  39. Wei, M., Shi, S., Wang, J., Li, Y., Duan, X.: Studies on the intercalation of naproxen into layered double hydroxide and its thermal decomposition by in situ FT-IR and in situ HT-XRD. J. Solid State Chem. 177, 2534–2541 (2004)

    Article  CAS  Google Scholar 

  40. Pongjanyakul, T., Khunawattanakul, W., Puttipipatkhachorn, S.: Physicochemical characterizations and release studies of nicotine–magnesium aluminum silicate complexes. Appl. Clay Sci. 44, 242–250 (2009)

    Article  CAS  Google Scholar 

  41. Rajkumar, S., Kevadiya, B.D., Bajaj, H.C.: Montmorillonite/poly (L-Lactide) microcomposite spheres as reservoirs of antidepressant drugs and their controlled release property. Aasian J. Pharm. Sci. 10, 452–458 (2015)

    Google Scholar 

  42. Mahdavinia, G.R., Afzali, A., Etemadi, H., Hoseinzadeh, H.: Magnetic/pH-sensitive nanocomposite hydrogel based carboxymethyl cellulose –g- polyacrylamide/montmorillonite for colon targeted drug delivery. Nanomed. Res. J. 2, 111–122 (2017)

    CAS  Google Scholar 

  43. Abduljauwad, S.N., Ahmed, H.: Enhancing cancer cell adhesion with clay nanoparticles for countering metastasis. Sci. Rep. 9, 5935 (2019)

    Google Scholar 

  44. Cheng, C., Gao, Y., Song, W., Zhao, Q., Zhang, H., Zhang, H.: Halloysite nanotube-based H2O2-responsive drug delivery system with a turn on effect on fluorescence for real-time monitoring. Chem. Eng. J. 380, 122474 (2020)

    Article  CAS  Google Scholar 

  45. Tran, V.A., Kadam, A.N., Lee, S.-W.: Adsorption-assisted photocatalytic degradation of methyl orange dye by zeolite-imidazole-framework-derived nanoparticles. J. Alloy. Compd. 835, 155414 (2020)

    Article  CAS  Google Scholar 

  46. Kouser, R., Vashist, A., Zafaryab, M., Rizvi, M.A., Ahmad, S.: Na-montmorillonite-dispersed sustainable polymer nanocomposite hydrogel films for anticancer drug delivery. ACS Omega 3, 15809–15820 (2018)

    Article  CAS  Google Scholar 

  47. Tran, V.A., Vo, V.G., Shim, K., Lee, S.-W., An, S.S.A.: Multimodal mesoporous silica nanocarriers for dual stimuli-responsive drug release and excellent photothermal ablation of cancer cells. Int. J. Nanomed. 15, 7667–7685 (2020)

    Article  CAS  Google Scholar 

  48. Murugesan, S., Scheibel, T.: Copolymer/clay nanocomposites for biomedical applications. Adv. Func. Mater. 30, 1908101 (2020)

    Article  CAS  Google Scholar 

  49. Tran, V.A., Vo, G.V., Tan, M.A., Park, J.-S., An, S.S.A., Lee, S.-W.: Dual stimuli-responsive multifunctional silicon nanocarriers for specifically targeting mitochondria in human cancer cells. Pharmaceutics 14, 858 (2022)

    Article  CAS  Google Scholar 

  50. Bayer, I.S.: Recent advances in mucoadhesive interface materials, mucoadhesion characterization, and technologies. Adv. Mater. Interfaces 9, 2200211 (2022)

    Article  CAS  Google Scholar 

  51. Liao, J., Peng, S., Long, M., Zhang, Y., Yang, H., Zhang, Y., et al.: Nano-Bio interactions of clay nanotubes with colon cancer cells. Colloids Surf., A 586, 124242 (2020)

    Article  CAS  Google Scholar 

  52. Santos, A.C., Ferreira, C., Veiga, F., Ribeiro, A.J., Panchal, A., Lvov, Y., et al.: Halloysite clay nanotubes for life sciences applications: from drug encapsulation to bioscaffold. Adv. Coll. Interface. Sci. 257, 58–70 (2018)

    Article  CAS  Google Scholar 

  53. Leporatti, S.: Halloysite clay nanotubes as nano-bazookas for drug delivery. Polym. Int. 66, 1111–1118 (2017)

    Article  CAS  Google Scholar 

  54. Lv, S., Li, M., Tang, Z., Song, W., Sun, H., Liu, H., et al.: Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy. Acta Biomater. 9, 9330–9342 (2013)

    Article  CAS  Google Scholar 

  55. Yang, Y., Li, J., Chen, F., Qiao, S., Li, Y., Pan, W.: Synthesis, formulation, and characterization of doxorubicin-loaded laponite/oligomeric hyaluronic acid-aminophenylboronic acid nanohybrids and cytological evaluation against MCF-7 breast cancer cells. AAPS Pharm. Sci. Tech. 21, 5 (2019)

    Article  Google Scholar 

  56. Dong, J., Cheng, Z., Tan, S., Zhu, Q.: Clay nanoparticles as pharmaceutical carriers in drug delivery systems. Expert Opin. Drug Deliv. 18, 695–714 (2021)

    Article  CAS  Google Scholar 

  57. Meirelles, L.M.A., Raffin, F.N.: Clay and polymer-based composites applied to drug release: a scientific and technological prospection. J. Pharmacy Pharm. Sci. 20, 115–134 (2017)

    Article  CAS  Google Scholar 

  58. Tran, A.V., Shim, K., Vo Thi, T.T., Kook, J.K., An, S.S.A., Lee, S.W.: Targeted and controlled drug delivery by multifunctional mesoporous silica nanoparticles with internal fluorescent conjugates and external polydopamine and graphene oxide layers. Acta Biomater 74, 397–413 (2018)

    Google Scholar 

  59. Aguzzi, C., Cerezo, P., Viseras, C., Caramella, C.: Use of clays as drug delivery systems: possibilities and limitations. Appl. Clay Sci. 36, 22–36 (2007)

    Article  CAS  Google Scholar 

  60. Akelah, A., Rehab, A.: Controlled release systems based on polyacrylates and polyacrylates/clay nanocomposites of atenolol drug. SPE Polym. 3, 118–127 (2022)

    Article  CAS  Google Scholar 

  61. Jafarbeglou, M., Abdouss, M., Shoushtari, A.M., Jafarbeglou, M.: Clay nanocomposites as engineered drug delivery systems. RSC Adv. 6, 50002–50016 (2016)

    Article  CAS  Google Scholar 

  62. Kamaly, N., Yameen, B., Wu, J., Farokhzad, O.C.: Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem. Rev. 116, 2602–2663 (2016)

    Article  CAS  Google Scholar 

  63. García-Villén, F., Viseras, C.: Clay-based pharmaceutical formulations and drug delivery systems. Pharmaceutics 12, 1142 (2020)

    Google Scholar 

  64. Dk, A., Oi, A., Eo, F., Aa, A., Is, A., et al.: Bioactivities, biomedical and pharmaceutical applications of raw and functionalized clay minerals: a review. Biomed. J. Sci. Tech. Res. 30, 23714–23722 (2020)

    Google Scholar 

  65. Anirudhan, T., Sandeep, S., Divya, P.: Synthesis and characterization of maleated cyclodextrin-grafted-silylated montmorillonite for the controlled release and colon specific delivery of tetracycline hydrochloride. RSC Adv. 2, 9555–9564 (2012)

    Article  CAS  Google Scholar 

  66. Anirudhan, T., Sandeep, S.: Synthesis, characterization, cellular uptake and cytotoxicity of a multi-functional magnetic nanocomposite for the targeted delivery and controlled release of doxorubicin to cancer cells. J. Mater. Chem. 22, 12888–12899 (2012)

    Article  CAS  Google Scholar 

  67. Bounabi, L., Mokhnachi, N.B., Haddadine, N., Ouazib, F., Barille, R.: Development of poly (2-hydroxyethyl methacrylate)/clay composites as drug delivery systems of paracetamol. J. Drug Deliv. Sci. Technol. 33, 58–65 (2016)

    Article  CAS  Google Scholar 

  68. Anirudhan, T., Gopal, S.S., Sandeep, S.: Synthesis and characterization of montmorillonite/N-(carboxyacyl) chitosan coated magnetic particle nanocomposites for controlled delivery of paracetamol. Appl. Clay Sci. 88, 151–158 (2014)

    Article  Google Scholar 

  69. Anirudhan, T., Parvathy, J.: Novel pH sensitive composite hydrogel based on functionalized chitosan/clay for the controlled release of a calcium channel blocker. Des. Monomers Polym. 18, 413–423 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Vy Anh Tran was funded by the Postdoctoral Scholarship Programme of Vingroup Innovation Foundation (VINIF), code VINIF.2022.STS.45.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vy Anh Tran or Giang N. L. Vo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tran, V.A., Vo, TT.T., Dang, V.Q., Vo, G.N.L. (2023). Clay-Based Composites and Nanocomposites for Drug Delivery. In: Hasnain, M.S., Nayak, A.K., Alkahtani, S. (eds) Carbon Nanostructures in Biomedical Applications. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-28263-8_13

Download citation

Publish with us

Policies and ethics

Navigation