Genome-Wide Association Study: A Powerful Approach to Map QTLs in Crop Plants

  • Chapter
  • First Online:
Advanced Crop Improvement, Volume 1

Abstract

Genome-wide association studies (GWAS) are powerful for identifying genomic regions, or even directly the causal loci, controlling the variation of quantitative traits impacted by multiple loci. First proposed for the discovery of genetic loci controlling human diseases, GWAS rapidly became a method of choice in plant genetic studies, once the number of markers covering the genome became sufficient. Based on the study of a large panel of unrelated accessions, the principle is simple: it consists of screening significant associations between the values of a trait assessed in each accession of the panel and their genotypes for markers covering the whole genome in a sufficiently dense manner. Several parameters may impact GWAS results and must be considered when starting a new study. They concern (i) the panel composition (size and composition), (ii) the phenotypes (quality of measurement, heritability, genotype × environment interaction) and (iii) genoty** (type and number of markers, possibility to perform imputation). Then several methods and software have been proposed to perform GWAS, considering (or not) the structure of the population, the kinship or other covariates and performing the analysis one marker at a time or adding multiple loci in the model. In this chapter, we will review all these aspects, illustrating them with a few examples. Finally, we will present the most recent developments in the domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abasht, B., & Lamont, S. J. (2007). Genome-wide association study of fatness in chickens. Iowa State University Animal Industry Report, 4(1), 1. https://doi.org/10.31274/ans_air-180814-892

    Article  Google Scholar 

  • Abe, A., Kosugi, S., Yoshida, K., et al. (2012). Genome sequencing reveals agronomically important loci in rice using MutMap. Nature Biotechnology, 30, 174–178.

    Article  CAS  PubMed  Google Scholar 

  • Akram, S., Arif, M. A. R., & Hameed, A. (2021). A GBS-based GWAS analysis of adaptability and yield traits in bread wheat (Triticum aestivum L.). Journal of Applied Genetics, 62, 27–41.

    Article  CAS  PubMed  Google Scholar 

  • Albert, E., Segura, V., Gricourt, J., et al. (2016). Association map** reveals the genetic architecture of tomato response to water deficit: Focus on major fruit quality traits. Journal of Experimental Botany, 67, 6413–6430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander, D. H., Novembre, J., & Lange, K. (2009). Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 19, 1655–1664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alonge, M., Wang, X., Benoit, M., et al. (2020). Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell, 182, 145–161.e23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alonso-Blanco, C., El-Assal, S. E.-D., Coupland, G., & Koornneef, M. (1998). Analysis of natural allelic variation at flowering time loci in the Landsberg erecta and Cape Verde Islands ecotypes of Arabidopsis thaliana. Genetics, 149, 749–764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alqudah, A. M., Sallam, A., Stephen Baenziger, P., & Börner, A. (2020). GWAS: Fast-forwarding gene identification and characterization in temperate cereals: Lessons from barley – A review. Journal of Advanced Research, 22, 119–135.

    Article  PubMed  Google Scholar 

  • Altshuler, D., Donnelly, P., & The International HapMap Consortium. (2005). A haplotype map of the human genome. Nature, 437, 1299–1320.

    Article  Google Scholar 

  • Aoun, N., Tauleigne, L., Lonjon, F., et al. (2017). Quantitative disease resistance under elevated temperature: Genetic basis of new resistance mechanisms to Ralstonia solanacearum. Frontiers in Plant Science, 8, 1387.

    Article  PubMed  PubMed Central  Google Scholar 

  • Aoun, N., Desaint, H., Boyrie, L., et al. (2020). A complex network of additive and epistatic quantitative trait loci underlies natural variation of Arabidopsis thaliana quantitative disease resistance to Ralstonia solanacearum under heat stress. Molecular Plant Pathology, 21, 1405–1420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aranzana, M. J., Kim, S., Zhao, K., et al. (2005). Genome-wide association map** in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genetics, 1, e60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arbelbide, M., Yu, J., & Bernardo, R. (2006). Power of mixed-model QTL map** from phenotypic, pedigree and marker data in self-pollinated crops. Theoretical and Applied Genetics, 112, 876–884.

    Article  CAS  PubMed  Google Scholar 

  • Arouisse, B., Korte, A., van Eeuwijk, F., & Kruijer, W. (2020). Imputation of 3 million SNPs in the Arabidopsis regional map** population. The Plant Journal, 102, 872–882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Astle, W., & Balding, D. J. (2009). Population structure and cryptic relatedness in genetic association studies. Statistical Science, 24, 451–471.

    Article  Google Scholar 

  • Atlin, G. N., Kleinknecht, K., Singh, K. P., & Piepho, H. P. (2011). Managing genotype x environment interaction in plant breeding programs: A selection theory approach. Journal of the Indian Society of Agricultural Statistics, 65, 237–247.

    Google Scholar 

  • Atwell, S., Huang, Y. S., Vilhjálmsson, B. J., et al. (2010). Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature, 465, 627–631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aulchenko, Y. S., De Koning, D.-J., & Haley, C. (2007). Genomewide rapid association using mixed model and regression: A fast and simple method for genomewide pedigree-based quantitative trait loci association analysis. Genetics, 177, 577–585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Austin, R. S., Vidaurre, D., Stamatiou, G., et al. (2011). Next-generation map** of Arabidopsis genes. The Plant Journal, 67, 715–725.

    Article  CAS  PubMed  Google Scholar 

  • Awika, H. O., Bedre, R., Yeom, J., et al. (2019). Develo** growth-associated molecular markers via high-throughput phenoty** in spinach. The Plant Genome, 12, 190027.

    Article  CAS  Google Scholar 

  • Azencott, C.-A., Grimm, D., Sugiyama, M., et al. (2013). Efficient network-guided multi-locus association map** with graph cuts. Bioinformatics, 29, i171–i179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babu, B. K., Mathur, R. K., Ravichandran, G., & Venu, M. V. B. (2019). Genome-wide association study (GWAS) for stem height increment in oil palm (Elaeis guineensis) germplasm using SNP markers. Tree Genetics & Genomes, 15, 40.

    Article  Google Scholar 

  • Bai, Y., Yan, Z., Moriones, E., & Fernández-Muñoz, R. (2018). Tomato disease resistances in the post-genomics era. Acta Horticulturae, 1207, 1–18.

    Article  Google Scholar 

  • Balasubramanian, S., Schwartz, C., Singh, A., et al. (2009). QTL map** in new Arabidopsis thaliana advanced intercross-recombinant inbred lines. PLoS One, 4(2), e4318.

    Article  PubMed  PubMed Central  Google Scholar 

  • Balding, D. J., Moltke, I., & Marioni, J. (Eds.). (2019). Handbook of statistical genomics (4th ed.). Wiley. Wiley.com

    Google Scholar 

  • Ball, R. D. (2013). Designing a GWAS: Power, sample size, and data structure. In C. Gondro, J. van der Werf, & B. Hayes (Eds.), Genome-wide association studies and genomic prediction (pp. 37–98). Humana Press.

    Chapter  Google Scholar 

  • Bandillo, N., Raghavan, C., Muyco, P. A., et al. (2013). Multi-parent advanced generation inter-cross (MAGIC) populations in rice: Progress and potential for genetics research and breeding. Rice, 6, 11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bandillo, N., Jarquin, D., Song, Q., et al. (2015). A population structure and genome-wide association analysis on the USDA soybean germplasm collection. The Plant Genome, 8, 2015.04.0024.

    Article  Google Scholar 

  • Bandillo, N. B., Lorenz, A. J., Graef, G. L., et al. (2017). Genome-wide association map** of qualitatively inherited traits in a germplasm collection. The Plant Genome, 10, plantgenome2016.06.0054.

    Article  Google Scholar 

  • Bararyenya, A., Olukolu, B. A., Tukamuhabwa, P., et al. (2020). Genome-wide association study identified candidate genes controlling continuous storage root formation and bulking in hexaploid sweet potato. BMC Plant Biology, 20, 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartlett, M. S. (1947). The use of transformations. Biometrics, 3, 39–52.

    Article  CAS  PubMed  Google Scholar 

  • Bartoli, C., & Roux, F. (2017). Genome-wide association studies in plant pathosystems: Toward an ecological genomics approach. Frontiers in Plant Science, 8, 763.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bauchet, G., Grenier, S., Samson, N., et al. (2017a). Identification of major loci and genomic regions controlling acid and volatile content in tomato fruit: Implications for flavor improvement. The New Phytologist, 215, 624–641.

    Article  CAS  PubMed  Google Scholar 

  • Bauchet, G., Grenier, S., Samson, N., et al. (2017b). Use of modern tomato breeding germplasm for deciphering the genetic control of agronomical traits by Genome Wide Association study. Theoretical and Applied Genetics, 130, 875–889.

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu, J., Doerksen, T., Boyle, B., et al. (2011). Association genetics of wood physical traits in the conifer white spruce and relationships with gene expression. Genetics, 188, 197–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beló, A., Zheng, P., Luck, S., et al. (2008). Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Molecular Genetics and Genomics, 279, 1–10.

    Article  PubMed  Google Scholar 

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B: Methodological, 57, 289–300.

    Google Scholar 

  • Bergelson, J., & Roux, F. (2010). Towards identifying genes underlying ecologically relevant traits in Arabidopsis thaliana. Nature Reviews. Genetics, 11, 867–879.

    Article  CAS  PubMed  Google Scholar 

  • Berger, S., Schlather, M., de los Campos, G., et al. (2015). A scale-corrected comparison of linkage disequilibrium levels between genic and non-genic regions. PLoS One, 10, e0141216.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bergougnoux, V. (2014). The history of tomato: From domestication to biopharming. Biotechnology Advances, 32, 170–189.

    Article  CAS  PubMed  Google Scholar 

  • Biesecker, L. G., Shianna, K. V., Mullikin, J. C. (2011). Exome sequencing: the expert view. Genome Biology, 12(9), 128. https://doi.org/10.1186/gb-2011-12-9-128

  • Bineau, E., Rambla, J. L., Priego-Cubero, S., et al. (2021). Breeding tomato hybrids for flavour: Comparison of GWAS results obtained on lines and F1 hybrids. Genes, 12, 1443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blein-Nicolas, M., Negro, S. S., Balliau, T., et al. (2020). A systems genetics approach reveals environment-dependent associations between SNPs, protein coexpression, and drought-related traits in maize. Genome Research, 30, 1593–1604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blue, E. E., Cheng, A., Chen, S., et al. (2020). Association of uncommon, noncoding variants in the APOE region with risk of Alzheimer disease in adults of European ancestry. JAMA Network Open, 3, e2017666.

    Article  PubMed  PubMed Central  Google Scholar 

  • Böhmer, A. C., Gölz, L., Kreusch, T., et al. (2018). Investigation of dominant and recessive inheritance models in genome-wide association studies data of nonsyndromic cleft lip with or without cleft palate. Birth Defects Research, 110, 336–341.

    Article  PubMed  Google Scholar 

  • Bonferroni, C. E. (1935). Il calcolo delle assicurazioni su gruppi di teste. In Studi in onore del Professore Salvatore Ortu Carboni (pp. 13–60). Bardi.

    Google Scholar 

  • Bonhomme, M., Fariello, M. I., Navier, H., et al. (2019). A local score approach improves GWAS resolution and detects minor QTL: Application to Medicago truncatula quantitative disease resistance to multiple Aphanomyces euteiches isolates. Heredity, 123, 517–531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonnafous, F., Fievet, G., Blanchet, N., et al. (2018). Comparison of GWAS models to identify non-additive genetic control of flowering time in sunflower hybrids. TAG Theoretical and Applied Genetics. Theoretische und Angewandte Genetik, 131, 319–332.

    Article  CAS  PubMed  Google Scholar 

  • Borevitz, J. O., & Nordborg, M. (2003). The impact of genomics on the study of natural variation in Arabidopsis. Plant Physiology, 132, 718–725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botstein, D., White, R. L., Skolnick, M., & Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32, 314–331.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society: Series B: Methodological, 26, 211–243.

    Google Scholar 

  • Brachi, B., Faure, N., Horton, M., et al. (2010). Linkage and association map** of Arabidopsis thaliana flowering time in nature. PLoS Genetics, 6, e1000940.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brachi, B., Morris, G. P., & Borevitz, J. O. (2011). Genome-wide association studies in plants: The missing heritability is in the field. Genome Biology, 12, 232.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradshaw AD (1965) Evolutionary significance of phenotypic plasticity in plants. In: Caspari EW, Thoday JM (eds) Advances in genetics. Academic Press, pp 115–155.

    Google Scholar 

  • Bradshaw, A. D. (2006). Unravelling phenotypic plasticity – Why should we bother? The New Phytologist, 170, 644–648.

    Article  PubMed  Google Scholar 

  • Brenchley, R., Spannagl, M., Pfeifer, M., et al. (2012). Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature, 491, 705–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckler, E. S., Holland, J. B., Bradbury, P. J., et al. (2009). The genetic architecture of maize flowering time. Science, 325, 714–718.

    Article  CAS  PubMed  Google Scholar 

  • Buniello, A., MacArthur, J. A. L., Cerezo, M., et al. (2019). The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Research, 47, D1005–D1012.

    Article  CAS  PubMed  Google Scholar 

  • Burghardt, L. T., Young, N. D., & Tiffin, P. (2017). A guide to genome-wide association map** in plants. Current Protocols in Plant Biology, 2, 22–38.

    Article  PubMed  Google Scholar 

  • Bush, W. S., & Moore, J. H. (2012). Chapter 11: Genome-wide association studies. PLoS Computational Biology, 8, e1002822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butelli, E., Licciardello, C., Zhang, Y., et al. (2012). Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell, 24, 1242–1255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buzdugan, L., Kalisch, M., Navarro, A., et al. (2016). Assessing statistical significance in multivariable genome wide association analysis. Bioinformatics, 32, 1990–2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calus, M. P. L., Bouwman, A. C., Hickey, J. M., et al. (2014). Evaluation of measures of correctness of genotype imputation in the context of genomic prediction: A review of livestock applications. Animal, 8, 1743–1753.

    Article  CAS  PubMed  Google Scholar 

  • Camacho, J., & Ferrer, A. (2014). Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: Practical aspects. Chemometrics and Intelligent Laboratory Systems, 131, 37–50.

    Article  CAS  Google Scholar 

  • Cao, K., Zhou, Z., Wang, Q., et al. (2016). Genome-wide association study of 12 agronomic traits in peach. Nature Communications, 7, 1–10.

    Article  Google Scholar 

  • Cericola, F., Portis, E., Lanteri, S., et al. (2014). Linkage disequilibrium and genome-wide association analysis for anthocyanin pigmentation and fruit color in eggplant. BMC Genomics, 15, 896.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chanock, S. J., Manolio, T., Boehnke, M., et al. (2007). Replicating genotype-phenotype associations. Nature, 447, 655–660.

    Article  CAS  PubMed  Google Scholar 

  • Chanroj, V., Rattanawong, R., Phumichai, T., et al. (2017). Genome-wide association map** of latex yield and girth in Amazonian accessions of Hevea brasiliensis grown in a suboptimal climate zone. Genomics, 109, 475–484.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J., & Shi, X. (2019). Sparse convolutional denoising autoencoders for genotype imputation. Genes, 10, 652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, W., Gao, Y., **e, W., et al. (2014). Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nature Genetics, 46, 714–721.

    Article  CAS  PubMed  Google Scholar 

  • Chen, H., Wang, C., Conomos, M. P., et al. (2016a). Control for population structure and relatedness for binary traits in genetic association studies via logistic mixed models. American Journal of Human Genetics, 98, 653–666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, W., Wang, W., Peng, M., et al. (2016b). Comparative and parallel genome-wide association studies for metabolic and agronomic traits in cereals. Nature Communications, 7, 1–10.

    Article  Google Scholar 

  • Chen, Q., Han, Y., Liu, H., et al. (2018). Genome-wide association analyses reveal the importance of alternative splicing in diversifying gene function and regulating phenotypic variation in maize. Plant Cell, 30, 1404–1423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, E., Huang, X., Tian, Z., et al. (2019). The genomics of Oryza species provides insights into rice domestication and heterosis. Annual Review of Plant Biology, 70, 639–665.

    Article  CAS  PubMed  Google Scholar 

  • Chen, S.-Y., Su, M.-H., Kremling, K. A., et al. (2020). Identification of miRNA-eQTLs in maize mature leaf by GWAS. BMC Genomics, 21, 689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, X., Dang, X., Wang, Y., et al. (2021a). Association map** of thousand grain weight using SSR and SNP markers in rice (Oryza sativa L.) across six environments. Tropical Plant Biology, 14, 143–155.

    Article  CAS  Google Scholar 

  • Chen, Y., Wu, H., Yang, W., et al. (2021b). Multivariate linear mixed model enhanced the power of identifying genome-wide association to poplar tree heights in a randomized complete block design. G3 Genes Genomes Genetics, 11, jkaa053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ching, A., Caldwell, K. S., Jung, M., et al. (2002). SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genetics, 3, 1–14.

    Article  Google Scholar 

  • Cichonska, A., Rousu, J., Marttinen, P., et al. (2016). metaCCA: Summary statistics-based multivariate meta-analysis of genome-wide association studies using canonical correlation analysis. Bioinformatics, 32, 1981–1989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke, J. H., Mithen, R., Brown, J. K. M., & Dean, C. (1995). QTL analysis of flowering time in Arabidopsis thaliana. Molecular and General Genetics MGG, 248, 278–286.

    Article  CAS  PubMed  Google Scholar 

  • Claussnitzer, M., Cho, J. H., Collins, R., et al. (2020). A brief history of human disease genetics. Nature, 577, 179–189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobb, J. N., DeClerck, G., Greenberg, A., et al. (2013). Next-generation phenoty**: Requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement. Theoretical and Applied Genetics, 126, 867–887.

    Article  PubMed  Google Scholar 

  • Collard, B. C. Y., & Mackill, D. J. (2008). Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 557–572.

    Article  CAS  Google Scholar 

  • Corder, E., Saunders, A., Strittmatter, W., et al. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 261, 921–923.

    Article  CAS  PubMed  Google Scholar 

  • Cormier, F., Le Gouis, J., Dubreuil, P., et al. (2014). A genome-wide identification of chromosomal regions determining nitrogen use efficiency components in wheat (Triticum aestivum L.). TAG Theoretical and Applied Genetics. Theoretische und Angewandte Genetik, 127, 2679–2693.

    Article  CAS  PubMed  Google Scholar 

  • Cortes, L. T., Zhang, Z., & Yu, J. (2021). Status and prospects of genome-wide association studies in plants. The Plant Genome, 14, e20077.

    Google Scholar 

  • Crossa, J., Burgueño, J., Dreisigacker, S., et al. (2007). Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics, 177, 1889–1913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Silva Linge, C., Cai, L., Fu, W., et al. (2021). Multi-locus genome-wide association studies reveal fruit quality hotspots in peach genome. Frontiers in Plant Science, 12, 644799.

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Agostino, N., & Tripodi, P. (2017). NGS-based genoty**, high-throughput phenoty** and genome-wide association studies laid the foundations for next-generation breeding in horticultural crops. Diversity, 9, 38.

    Article  Google Scholar 

  • D’hoop, B. B., Keizer, P. L. C., Paulo, M. J., et al. (2014). Identification of agronomically important QTL in tetraploid potato cultivars using a marker–trait association analysis. Theoretical and Applied Genetics, 127, 731–748.

    Article  PubMed  Google Scholar 

  • Darvasi, A., & Soller, M. (1995). Advanced intercross lines, an experimental population for fine genetic map**. Genetics, 141, 1199–1207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das, S., Abecasis, G. R., & Browning, B. L. (2018). Genotype imputation from large reference panels. Annual Review of Genomics and Human Genetics, 19, 73–96.

    Article  CAS  PubMed  Google Scholar 

  • Debieu, M., Sine, B., Passot, S., et al. (2018). Response to early drought stress and identification of QTLs controlling biomass production under drought in pearl millet. PLoS One, 13, e0201635.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dell’Acqua, M., Gatti, D. M., Pea, G., et al. (2015). Genetic properties of the MAGIC maize population: A new platform for high definition QTL map** in Zea mays. Genome Biology, 16, 167.

    Article  PubMed  PubMed Central  Google Scholar 

  • Desaint, H., Aoun, N., Deslandes, L., et al. (2021). Fight hard or die trying: When plants face pathogens under heat stress. The New Phytologist, 229, 712–734.

    Article  PubMed  Google Scholar 

  • Devlin, B., & Roeder, K. (1999). Genomic control for association studies. Biometrics, 55, 997–1004.

    Article  CAS  PubMed  Google Scholar 

  • Devlin, B., Bacanu, S.-A., & Roeder, K. (2004). Genomic control to the extreme. Nature Genetics, 36, 1129–1130.

    Article  CAS  PubMed  Google Scholar 

  • DeWan, A., Liu, M., Hartman, S., et al. (2006). HTRA1 promoter polymorphism in wet age-related macular degeneration. Science, 314, 989–992.

    Article  CAS  PubMed  Google Scholar 

  • Dias, R., Evans, D., Chen, S.-F., et al. (2021). Rapid, reference-free human genotype imputation with denoising autoencoders. Bior**v. https://doi.org/10.1101/2021.12.01.470739

  • Díaz, P., Sarmiento, F., Mathew, B., et al. (2021). Genomic regions associated with physiological, biochemical and yield-related responses under water deficit in diploid potato at the tuber initiation stage revealed by GWAS. PLoS One, 16, e0259690.

    Article  PubMed  PubMed Central  Google Scholar 

  • Diouf, I., Albert, E., Duboscq, R., et al. (2020). Integration of QTL, transcriptome and polymorphism studies reveals candidate genes for water stress response in tomato. Genes, 11, 900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • do Carmo, C. D., e Sousa, M. B., Brito, A. C., & de Oliveira, E. J. (2020). Genome-wide association studies for waxy starch in cassava. Euphytica, 216, 82.

    Article  Google Scholar 

  • Dokan, K., Kawamura, S., & Teshima, K. M. (2021). Effects of single nucleotide polymorphism ascertainment on population structure inferences. G3 Genes Genomes Genetics, 11(9), jkab128.

    Article  PubMed  PubMed Central  Google Scholar 

  • Domínguez, M., Dugas, E., Benchouaia, M., et al. (2020). The impact of transposable elements on tomato diversity. Nature Communications, 11, 4058.

    Article  PubMed  PubMed Central  Google Scholar 

  • Duan, T., Chapman, S. C., Guo, Y., & Zheng, B. (2017). Dynamic monitoring of NDVI in wheat agronomy and breeding trials using an unmanned aerial vehicle. Field Crops Research, 210, 71–80.

    Article  Google Scholar 

  • Edwards, S. L., Beesley, J., French, J. D., & Dunning, A. M. (2013). Beyond GWASs: Illuminating the dark road from association to function. American Journal of Human Genetics, 93, 779–797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elshire, R. J., Glaubitz, J. C., Sun, Q., et al. (2011). A robust, simple genoty**-by-sequencing (GBS) approach for high diversity species. PLoS One, 6, e19379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Soda, M., Kruijer, W., Malosetti, M., et al. (2015). Quantitative trait loci and candidate genes underlying genotype by environment interaction in the response of Arabidopsis thaliana to drought. Plant, Cell & Environment, 38, 585–599.

    Article  CAS  Google Scholar 

  • Ersoz, E. S., Yu, J., & Buckler, E. S. (2007). Applications of linkage disequilibrium and association map** in crop plants. In R. K. Varshney & R. Tuberosa (Eds.), Genomics-assisted crop improvement (Genomics approaches and platforms) (Vol. 1, pp. 97–119). Springer.

    Chapter  Google Scholar 

  • Eskridge, K. (2003). Field design and the search for quantitative trait loci in plants.

    Google Scholar 

  • Eu-Ahsunthornwattana, J., Miller, E., Fakiola, M., et al. (2014). Comparison of methods to account for relatedness in genome-wide association studies with family-based data. PLoS Genetics, 10, e1004445.

    Article  PubMed  PubMed Central  Google Scholar 

  • Excoffier, L., & Slatkin, M. (1995). Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Molecular Biology and Evolution, 12, 921–927.

    CAS  PubMed  Google Scholar 

  • Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics (4th ed.). Addison Wesley Longman.

    Google Scholar 

  • Falush, D., Stephens, M., & Pritchard, J. K. (2003). Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics, 164, 1567–1587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falush, D., Stephens, M., & Pritchard, J. K. (2007). Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Molecular Ecology Notes, 7, 574–578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang, D. D., Jenkins, J. N., Deng, D. D., et al. (2014). Quantitative trait loci analysis of fiber quality traits using a random-mated recombinant inbred population in Upland cotton (Gossypium hirsutum L.). BMC Genomics, 15, 397.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang, L., Wang, Q., Hu, Y., et al. (2017). Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nature Genetics, 49(7), 1089–1098.

    Article  CAS  PubMed  Google Scholar 

  • FAOSTAT. (2019). Food and Agriculture Organization of the United Nations. http://fao.org/faostat/en/

  • Fariello, M. I., Boitard, S., Mercier, S., et al. (2017). Accounting for linkage disequilibrium in genome scans for selection without individual genotypes: The local score approach. Molecular Ecology, 26, 3700–3714.

    Article  CAS  PubMed  Google Scholar 

  • Ferguson, J. N., Fernandes, S. B., Monier, B., et al. (2021). Machine learning-enabled phenoty** for GWAS and TWAS of WUE traits in 869 field-grown sorghum accessions. Plant Physiology, 187, 1481–1500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira, M. A. R., & Purcell, S. M. (2009). A multivariate test of association. Bioinformatics, 25, 132–133.

    Article  CAS  PubMed  Google Scholar 

  • Fiorani, F., & Schurr, U. (2013). Future scenarios for plant phenoty**. Annual Review of Plant Biology, 64, 267–291.

    Article  CAS  PubMed  Google Scholar 

  • Flint-Garcia, S. A., Thornsberry, J. M., & Buckler, E. S., IV. (2003). Structure of linkage disequilibrium in plants. Annual Review of Plant Biology, 54, 357–374.

    Article  CAS  PubMed  Google Scholar 

  • Forcada, C. F., Oraguzie, N., Reyes-Chin-Wo, S., et al. (2015). Identification of genetic loci associated with quality traits in almond via association map**. PLoS One, 10, e0127656.

    Article  Google Scholar 

  • Forni, S., Aguilar, I., & Misztal, I. (2011). Different genomic relationship matrices for single-step analysis using phenotypic, pedigree and genomic information. Genetics, Selection, Evolution, 43, 1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Forrest, K., Pujol, V., Bulli, P., et al. (2014). Development of a SNP marker assay for the Lr67 gene of wheat using a genoty** by sequencing approach. Molecular Breeding, 34, 2109–2118.

    Article  CAS  Google Scholar 

  • Fournier-Level, A., Korte, A., Cooper, M. D., et al. (2011). A map of local adaptation in Arabidopsis thaliana. Science, 334, 86–89.

    Article  CAS  PubMed  Google Scholar 

  • Frachon, L., Libourel, C., Villoutreix, R., et al. (2017). Intermediate degrees of synergistic pleiotropy drive adaptive evolution in ecological time. Nature Ecology and Evolution, 1, 1551–1561.

    Article  PubMed  Google Scholar 

  • Fragoso, C. A., Heffelfinger, C., Zhao, H., & Dellaporta, S. L. (2016). Imputing genotypes in biallelic populations from low-coverage sequence data. Genetics, 202, 487–495.

    Article  CAS  PubMed  Google Scholar 

  • Francisco, F. R., Hild Aono, A., Da Silva, C. C., et al. (2021). Unravelling rubber tree growth by integrating GWAS and biological network-based approaches. Frontiers in Plant Science, 12, 768589. https://doi.org/10.3389/fpls.2021.768589

    Article  PubMed  PubMed Central  Google Scholar 

  • François, O., & Caye, K. (2018). Naturalgwas: An R package for evaluating genomewide association methods with empirical data. Molecular Ecology Resources, 18, 789–797.

    Article  PubMed  Google Scholar 

  • Frichot, E., Mathieu, F., Trouillon, T., et al. (2014). Fast and efficient estimation of individual ancestry coefficients. Genetics, 196, 973–983.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu, J., Cheng, Y., Linghu, J., et al. (2013). RNA sequencing reveals the complex regulatory network in the maize kernel. Nature Communications, 4, 2832.

    Article  PubMed  Google Scholar 

  • Fu, W., da Silva Linge, C., & Gasic, K. (2021). Genome-wide association study of brown rot (Monilinia spp.) tolerance in peach. Frontiers in Plant Science, 12, 354.

    Article  Google Scholar 

  • Gage, J. L., Jarquín, D., Romay, C., et al. (2017). The effect of artificial selection on phenotypic plasticity in maize. Nature Communications, 8, 1348.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gallagher, M. D., & Chen-Plotkin, A. S. (2018). The post-GWAS era: From association to function. American Journal of Human Genetics, 102, 717–730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, X. (2011). Multiple testing corrections for imputed SNPs. Genetic Epidemiology, 35, 154–158.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao, X., Starmer, J., & Martin, E. R. (2008). A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genetic Epidemiology, 32, 361–369.

    Article  PubMed  Google Scholar 

  • Gao, X., Becker, L. C., Becker, D. M., et al. (2010). Avoiding the high Bonferroni penalty in genome-wide association studies. Genetic Epidemiology, 34, 100–105.

    PubMed  PubMed Central  Google Scholar 

  • Garris, A. J., McCouch, S. R., & Kresovich, S. (2003). Population structure and its effect on haplotype diversity and linkage disequilibrium surrounding the xa5 locus of rice (Oryza sativa L.). Genetics, 165, 759–769.

    Article  PubMed  PubMed Central  Google Scholar 

  • Garsmeur, O., Droc, G., Antonise, R., et al. (2018). A mosaic monoploid reference sequence for the highly complex genome of sugarcane. Nature Communications, 9, 2638.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaut, B. S., Seymour, D. K., Liu, Q., & Zhou, Y. (2018). Demography and its effects on genomic variation in crop domestication. Nature Plants, 4, 512–520.

    Article  PubMed  Google Scholar 

  • Giacomini, K. M., Yee, S. W., Mushiroda, T., et al. (2017). Genome-wide association studies of drug response and toxicity: An opportunity for genome medicine. Nature Reviews. Drug Discovery, 16, 70–70.

    Article  Google Scholar 

  • Goerg, G. M. (2011). Lambert W random variables—A new family of generalized skewed distributions with applications to risk estimation. The Annals of Applied Statistics, 5, 2197–2230.

    Article  Google Scholar 

  • Gower, J. C. (1966). Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 53, 325–338.

    Article  Google Scholar 

  • Graffelman, J., Jain, D., & Weir, B. (2017). A genome-wide study of Hardy–Weinberg equilibrium with next generation sequence data. Human Genetics, 136, 727–741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, W., Fukatsu, T., & Ninomiya, S. (2015). Automated characterization of flowering dynamics in rice using field-acquired time-series RGB images. Plant Methods, 11, 7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo, Z., Yang, W., Chang, Y., et al. (2018). Genome-wide association studies of image traits reveal genetic architecture of drought resistance in rice. Molecular Plant, 11, 789–805.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, P. K., Rustgi, S., & Kulwal, P. L. (2005). Linkage disequilibrium and association studies in higher plants: Present status and future prospects. Plant Molecular Biology, 57, 461–485.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, P. K., Kulwal, P. L., & Jaiswal, V. (2014). Chapter Two – Association map** in crop plants: Opportunities and challenges. In T. Friedmann, J. C. Dunlap, & S. F. Goodwin (Eds.), Advances in genetics (pp. 109–147). Academic Press.

    Google Scholar 

  • Gupta, P. K., Kulwal, P. L., & Jaiswal, V. (2019). Association map** in plants in the post-GWAS genomics era. In Advances in genetics (pp. 75–154). Elsevier.

    Google Scholar 

  • Haga, H., Yamada, R., Ohnishi, Y., et al. (2002). Gene-based SNP discovery as part of the Japanese Millennium Genome Project: Identification of 190 562 genetic variations in the human genome. Journal of Human Genetics, 47, 605–610.

    Article  CAS  PubMed  Google Scholar 

  • Hamblin, M. T., Buckler, E. S., & Jannink, J.-L. (2011). Population genetics of genomics-based crop improvement methods. Trends in Genetics, 27, 98–106.

    Article  CAS  PubMed  Google Scholar 

  • Han, K., Lee, H.-Y., Ro, N.-Y., et al. (2018). QTL map** and GWAS reveal candidate genes controlling capsaicinoid content in Capsicum. Plant Biotechnology Journal, 16, 1546–1558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hancock, A. M., Brachi, B., Faure, N., et al. (2011). Adaptation to climate across the Arabidopsis thaliana genome. Science, 334, 83–86.

    Article  CAS  PubMed  Google Scholar 

  • Hartl, D. L., & Clark, A. G. (1997). Principles of population genetics (542 p). Sinauer Associates, Inc..

    Google Scholar 

  • Hartley, S. W., & Sebastiani, P. (2013). PleioGRiP: Genetic risk prediction with pleiotropy. Bioinformatics, 29, 1086–1088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes, B. (2013). Overview of statistical methods for genome-wide association studies (GWAS). Methods in Molecular Biology, 1019, 149–169.

    Article  PubMed  Google Scholar 

  • Hill, W. G., & Robertson, A. (1968). Linkage disequilibrium in finite populations. Theoretical and Applied Genetics, 38, 226–231.

    Article  CAS  PubMed  Google Scholar 

  • Hill, W. G., & Weir, B. S. (2011). Variation in actual relationship as a consequence of Mendelian sampling and linkage. Genetical Research, 93, 47–64.

    Article  CAS  Google Scholar 

  • Houwen, R. H. J., Baharloo, S., Blankenship, K., et al. (1994). Genome screening by searching for shared segments: Map** a gene for benign recurrent intrahepatic cholestasis. Nature Genetics, 8, 380–386.

    Article  CAS  PubMed  Google Scholar 

  • Howie, B., Fuchsberger, C., Stephens, M., et al. (2012). Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nature Genetics, 44, 955–959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, X., & Han, B. (2014). Natural variations and genome-wide association studies in crop plants. Annual Review of Plant Biology, 65, 531–551.

    Article  CAS  PubMed  Google Scholar 

  • Huang, X., Wei, X., Sang, T., et al. (2010). Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics, 42, 961–967.

    Article  CAS  PubMed  Google Scholar 

  • Huang, X., Paulo, M.-J., Boer, M., et al. (2011). Analysis of natural allelic variation in Arabidopsis using a multiparent recombinant inbred line population. Proceedings of the National Academy of Sciences, 108, 4488–4493.

    Article  CAS  Google Scholar 

  • Huang, B. E., George, A. W., Forrest, K. L., et al. (2012a). A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnology Journal, 10, 826–839.

    Article  CAS  PubMed  Google Scholar 

  • Huang, X., Kurata, N., Wei, X., et al. (2012b). A map of rice genome variation reveals the origin of cultivated rice. Nature, 490, 497–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, X., Zhao, Y., Li, C., et al. (2012c). Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nature Genetics, 44, 32–39.

    Article  Google Scholar 

  • Huang, X., Yang, S., Gong, J., et al. (2015). Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nature Communications, 6, 6258.

    Article  CAS  PubMed  Google Scholar 

  • Hubisz, M. J., Falush, D., Stephens, M., & Pritchard, J. K. (2009). Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources, 9, 1322–1332.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hyten, D. L., Song, Q., Zhu, Y., et al. (2006). Impacts of genetic bottlenecks on soybean genome diversity. Proceedings of the National Academy of Sciences, 103, 16666–16671.

    Article  CAS  Google Scholar 

  • Ingvarsson, P. K., & Street, N. R. (2011). Association genetics of complex traits in plants. The New Phytologist, 189, 909–922.

    Article  PubMed  Google Scholar 

  • International Human Genome Map** Consortium WUSOM Genome Sequencing Center, Mcpherson, J. D., Marra, M., Hillier, L., et al. (2001). A physical map of the human genome. Nature, 409, 934–941.

    Article  Google Scholar 

  • International Human Genome Sequencing Consortium. (2004). Finishing the euchromatic sequence of the human genome. Nature, 431, 931–945.

    Article  Google Scholar 

  • International Rice Genome Sequencing Project. (2005). The map-based sequence of the rice genome. Nature, 436, 793–800.

    Article  Google Scholar 

  • IRRI. (2002). Standard evaluation system for rice (pp. 1–45). International Rice Research Institute.

    Google Scholar 

  • Jaiswal, V., Bandyopadhyay, T., Gahlaut, V., et al. (2019). Genome-wide association study (GWAS) delineates genomic loci for ten nutritional elements in foxtail millet (Setaria italica L.). Journal of Cereal Science, 85, 48–55.

    Article  CAS  Google Scholar 

  • Jia, G., Huang, X., Zhi, H., et al. (2013). A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nature Genetics, 45, 957–961.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, Y., & Reif, J. C. (2015). Modeling epistasis in genomic selection. Genetics, 201, 759–768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johannsen, W. (2014). The genotype conception of heredity. International Journal of Epidemiology, 43, 989–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jolliffe, I. T. (2002). Principal component analysis (2nd ed.). Springer-Verlag.

    Google Scholar 

  • Joo, J. W. J., Kang, E. Y., Org, E., et al. (2016). Efficient and accurate multiple-phenotype regression method for high dimensional data considering population structure. Genetics, 204, 1379–1390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jouffroy, O., Saha, S., Mueller, L., et al. (2016). Comprehensive repeatome annotation reveals strong potential impact of repetitive elements on tomato ripening. BMC Genomics, 17, 624.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang, H. M., Zaitlen, N. A., Wade, C. M., et al. (2008). Efficient control of population structure in model organism association map**. Genetics, 178, 1709–1723.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang, H. M., Sul, J. H., Service, S. K., et al. (2010). Variance component model to account for sample structure in genome-wide association studies. Nature Genetics, 42, 348–354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawakatsu, T., Huang, S. C., Jupe, F., et al. (2016). Epigenomic diversity in a global collection of Arabidopsis thaliana accessions. Cell, 166, 492–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kayondo, S. I., Pino Del Carpio, D., Lozano, R., et al. (2018). Genome-wide association map** and genomic prediction for CBSD resistance in Manihot esculenta. Scientific Reports, 8, 1549.

    Article  PubMed  PubMed Central  Google Scholar 

  • Keurentjes, J. J. B., Willems, G., van Eeuwijk, F., et al. (2011). A comparison of population types used for QTL map** in Arabidopsis thaliana. Plant Genetic Resources, 9, 185–188.

    Article  CAS  Google Scholar 

  • Khokhar, W., Hassan, M. A., Reddy, A. S. N., et al. (2019). Genome-wide identification of splicing quantitative trait loci (sQTLs) in diverse ecotypes of Arabidopsis thaliana. Frontiers in Plant Science, 10, 1160.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klein, R. J., Zeiss, C., Chew, E. Y., et al. (2005). Complement factor H polymorphism in age-related macular degeneration. Science, 308, 385–389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koester, R. P., Sisco, P. H., & Stuber, C. W. (1993). Identification of quantitative trait loci controlling days to flowering and plant height in two near isogenic lines of maize. Crop Science, 33, 1209–1216.

    Article  Google Scholar 

  • Korte, A., & Farlow, A. (2013). The advantages and limitations of trait analysis with GWAS: A review. Plant Methods, 9, 29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korte, A., Vilhjálmsson, B. J., Segura, V., et al. (2012). A mixed-model approach for genome-wide association studies of correlated traits in structured populations. Nature Genetics, 44, 1066–1071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kover, P. X., Valdar, W., Trakalo, J., et al. (2009). A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genetics, 5(7), e1000551.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kowalski, S. P., Lan, T.-H., Feldmann, K. A., & Paterson, A. H. (1994). QTL map** of naturally-occurring variation in flowering time of Arabidopsis thaliana. Molecular and General Genetics MGG, 245, 548–555.

    Article  CAS  PubMed  Google Scholar 

  • Kremling, K. A. G., Diepenbrock, C. H., Gore, M. A., et al. (2019). Transcriptome-wide association supplements genome-wide association in Zea mays. G3 Genes Genomes Genetics, 9, 3023–3033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kritchman, S., & Nadler, B. (2008). Determining the number of components in a factor model from limited noisy data. Chemometrics and Intelligent Laboratory Systems, 94, 19–32.

    Article  CAS  Google Scholar 

  • Kulwal, P. L. (2016). Association map** and genomic selection—Where does sorghum stand? In S. Rakshit & Y.-H. Wang (Eds.), The sorghum genome (pp. 137–148). Springer International Publishing.

    Chapter  Google Scholar 

  • Kumar, J., Pratap, A., Solanki, R. K., et al. (2012). Genomic resources for improving food legume crops. The Journal of Agricultural Science, 150, 289–318.

    Article  CAS  Google Scholar 

  • Kump, K. L., Bradbury, P. J., Wisser, R. J., et al. (2011). Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association map** population. Nature Genetics, 43, 163–168.

    Article  CAS  PubMed  Google Scholar 

  • Kuroha, T., Nagai, K., Gamuyao, R., et al. (2018). Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Science, 361, 181–186.

    Article  CAS  PubMed  Google Scholar 

  • Lachance, J., & Tishkoff, S. A. (2013). SNP ascertainment bias in population genetic analyses: Why it is important, and how to correct it. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 35, 780–786.

    Article  CAS  PubMed  Google Scholar 

  • Lander, E. S., & Botstein, D. (1986). Map** complex genetic traits in humans: New methods using a complete RFLP linkage map. Cold Spring Harbor Symposia on Quantitative Biology, 51, 49–62.

    Article  PubMed  Google Scholar 

  • Lander, E. S., & Schork, N. J. (1994). Genetic dissection of complex traits. Science, 265(5181), 2037–2048.

    Article  CAS  PubMed  Google Scholar 

  • Larsen, B., Migicovsky, Z., Jeppesen, A. A., et al. (2019). Genome-wide association studies in apple reveal loci for aroma volatiles, sugar composition, and harvest date. The Plant Genome, 12, 180104.

    Article  Google Scholar 

  • Larsson, S. J., Lipka, A. E., & Buckler, E. S. (2013). Lessons from Dwarf8 on the strengths and weaknesses of structured association map**. PLoS Genetics, 9, e1003246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawson, M. J., & Zhang, L. (2006). Distinct patterns of SSR distribution in the Arabidopsis thaliana and rice genomes. Genome Biology, 7, R14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Signor, C., Aimé, D., Bordat, A., et al. (2017). Genome-wide association studies with proteomics data reveal genes important for synthesis, transport and packaging of globulins in legume seeds. The New Phytologist, 214, 1597–1613.

    Article  PubMed  Google Scholar 

  • Lee, S., Kasif, S., Weng, Z., & Cantor, C. R. (2008). Quantitative analysis of single nucleotide polymorphisms within copy number variation. PLoS One, 3, e3906.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, J. J., Wedow, R., Okbay, A., et al. (2018). Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nature Genetics, 50, 1112–1121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, N., & Stephens, M. (2003). Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data. Genetics, 165, 2213–2233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Huang, Y., Bergelson, J., et al. (2010). Association map** of local climate-sensitive quantitative trait loci in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 107, 21199–21204.

    Article  CAS  Google Scholar 

  • Li, L., Li, Y., Browning, S. R., et al. (2011). Performance of genotype imputation for rare variants identified in exons and flanking regions of genes. PLoS One, 6, e24945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, M., Liu, X., Bradbury, P., et al. (2014). Enrichment of statistical power for genome-wide association studies. BMC Biology, 12, 73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, W., Zhu, Z., Chern, M., et al. (2017). A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell, 170, 114–126.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Ruperao, P., Batley, J., et al. (2018). Investigating drought tolerance in chickpea using genome-wide association map** and genomic selection based on whole-genome resequencing data. Frontiers in Plant Science, 9, 190.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, B., Veturi, Y., Verma, A., et al. (2021a). Tissue specificity-aware TWAS (TSA-TWAS) framework identifies novel associations with metabolic, immunologic, and virologic traits in HIV-positive adults. PLoS Genetics, 17, e1009464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, D., Liu, Q., & Schnable, P. S. (2021b). TWAS results are complementary to and less affected by linkage disequilibrium than GWAS. Plant Physiology, 186, 1800–1811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X., Guo, T., Wang, J., et al. (2021c). An integrated framework reinstating the environmental dimension for GWAS and genomic selection in crops. Molecular Plant, 14, 874–887.

    Article  CAS  PubMed  Google Scholar 

  • Lin, D. Y., Hu, Y., Huang, B. E. (2008). Simple and efficient analysis of disease association with missing genotype data. American Journal of Human Genetics, 82(2), 444–452. https://doi.org/10.1016/j.ajhg.2007.11.004

  • Lin, P., Hartz, S. M., Zhang, Z., et al. (2010). A new statistic to evaluate imputation reliability. PLoS One, 5, e9697.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin, T., Zhu, G., Zhang, J., et al. (2014). Genomic analyses provide insights into the history of tomato breeding. Nature Genetics, 46, 1220–1226.

    Article  CAS  PubMed  Google Scholar 

  • Lindqvist-Kreuze, H., Gastelo, M., Perez, W., et al. (2014). Phenotypic stability and genome-wide association study of late blight resistance in potato genotypes adapted to the tropical highlands. Phytopathology, 104, 624–633.

    Article  PubMed  Google Scholar 

  • Lipka, A. E., Kandianis, C. B., Hudson, M. E., et al. (2015). From association to prediction: Statistical methods for the dissection and selection of complex traits in plants. Current Opinion in Plant Biology, 24, 110–118.

    Article  PubMed  Google Scholar 

  • Lippert, C., Listgarten, J., Liu, Y., et al. (2011). FaST linear mixed models for genome-wide association studies. Nature Methods, 8, 833–835.

    Article  CAS  PubMed  Google Scholar 

  • Lippert, C., Casale, F. P., Rakitsch, B., & Stegle, O. (2014). LIMIX: Genetic analysis of multiple traits. BioRxiv 003905.

    Google Scholar 

  • Listgarten, J., Lippert, C., Kadie, C. M., et al. (2012). Improved linear mixed models for genome-wide association studies. Nature Methods, 9, 525–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, H.-J., & Yan, J. (2019). Crop genome-wide association study: A harvest of biological relevance. The Plant Journal, 97, 8–18.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., Huang, M., Fan, B., et al. (2016). Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genetics, 12, e1005767.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, J., Huang, J., Guo, H., et al. (2017). The conserved and unique genetic architecture of kernel size and weight in maize and rice. Plant Physiology, 175, 774–785.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, X., Lu, H., Liu, P., et al. (2020). Identification of novel loci and candidate genes for cucumber downy mildew resistance using GWAS. Plants, 9, 1659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobréaux, S., & Melodelima, C. (2015). Detection of genomic loci associated with environmental variables using generalized linear mixed models. Genomics, 105, 69–75.

    Article  PubMed  Google Scholar 

  • Lu, Z.-H., Khondker, Z., Ibrahim, J. G., et al. (2017). Bayesian longitudinal low-rank regression models for imaging genetic data from longitudinal studies. NeuroImage, 149, 305–322.

    Article  CAS  PubMed  Google Scholar 

  • Ma, H., Li, G., Würschum, T., et al. (2018). Genome-wide association study of haploid male fertility in maize (Zea Mays L.). Frontiers in Plant Science, 9, 974.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mackay, T. F. C. (2001). The genetic architecture of quantitative traits. Annual Review of Genetics, 35, 303–339.

    Article  CAS  PubMed  Google Scholar 

  • Mahlein, A.-K. (2016). Plant disease detection by imaging sensors – Parallels and specific demands for precision agriculture and plant phenoty**. Plant Disease, 100, 241–251.

    Article  PubMed  Google Scholar 

  • Mammadov, J., Aggarwal, R., Buyyarapu, R., & Kumpatla, S. (2012). SNP markers and their impact on plant breeding. International Journal of Plant Genomics, 2012, e728398.

    Article  Google Scholar 

  • Mangin, B., Siberchicot, A., Nicolas, S., et al. (2012). Novel measures of linkage disequilibrium that correct the bias due to population structure and relatedness. Heredity, 108, 285–291.

    Article  CAS  PubMed  Google Scholar 

  • Mangin, B., Casadebaig, P., Cadic, E., et al. (2017). Genetic control of plasticity of oil yield for combined abiotic stresses using a joint approach of crop modelling and genome-wide association. Plant, Cell & Environment, 40, 2276–2291.

    Article  CAS  Google Scholar 

  • Mangino, G., Arrones, A., Plazas, M., et al. (2021). Newly developed MAGIC population allows identification of strong associations and candidate genes for anthocyanin pigmentation in eggplant. BioR**v. https://doi.org/10.1101/2021.09.10.459758

  • Manolio, T. A., Collins, F. S., Cox, N. J., et al. (2009). Finding the missing heritability of complex diseases. Nature, 461, 747–753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mariette, S., Wong Jun Tai, F., Roch, G., et al. (2016). Genome-wide association links candidate genes to resistance to Plum Pox Virus in apricot (Prunus armeniaca). The New Phytologist, 209, 773–784.

    Article  CAS  PubMed  Google Scholar 

  • Marigorta, U. M., Rodríguez, J. A., Gibson, G., & Navarro, A. (2018). Replicability and prediction: Lessons and challenges from GWAS. Trends in Genetics, 34, 504–517.

    Article  CAS  PubMed  Google Scholar 

  • Martin, A. R., Kanai, M., Kamatani, Y., et al. (2019). Clinical use of current polygenic risk scores may exacerbate health disparities. Nature Genetics, 51, 584–591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mata-Nicolás, E., Montero-Pau, J., Gimeno-Paez, E., et al. (2020). Exploiting the diversity of tomato: The development of a phenotypically and genetically detailed germplasm collection. Horticulture Research, 7, 1–14.

    Article  Google Scholar 

  • Maurano, M. T., Humbert, R., Rynes, E., et al. (2012). Systematic localization of common disease-associated variation in regulatory DNA. Science, 7, 1190–1195.

    Article  Google Scholar 

  • McKay, J. K., Richards, J. H., Nemali, K. S., et al. (2008). Genetics of drought adaptation in Arabidopsis thaliana II. QTL analysis of a new map** population, KAS-1 × TSU-1. Evolution, 62, 3014–3026.

    Article  PubMed  Google Scholar 

  • McKown, A. D., Klápště, J., Guy, R. D., et al. (2014). Genome-wide association implicates numerous genes underlying ecological trait variation in natural populations of Populus trichocarpa. The New Phytologist, 203, 535–553.

    Article  CAS  PubMed  Google Scholar 

  • McVean, G. (2009). A genealogical interpretation of principal components analysis. PLoS Genetics, 5, e1000686.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meijón, M., Satbhai, S. B., Tsuchimatsu, T., & Busch, W. (2014). Genome-wide association study using cellular traits identifies a new regulator of root development in Arabidopsis. Nature Genetics, 46, 77–81.

    Article  PubMed  Google Scholar 

  • Michael, T. P., & Jackson, S. (2013). The first 50 plant genomes. The Plant Genome, 6, plantgenome2013.03.0001.

    Article  Google Scholar 

  • Micheletti, D., Dettori, M. T., Micali, S., et al. (2015). Whole-genome analysis of diversity and SNP-major gene association in peach germplasm. PLoS One, 10, e0136803.

    Article  PubMed  PubMed Central  Google Scholar 

  • Millet, E. J., Welcker, C., Kruijer, W., et al. (2016). Genome-wide analysis of yield in Europe: Allelic effects vary with drought and heat scenarios1 [OPEN]. Plant Physiology, 172, 749–764.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mir, R. R., Reynolds, M., Pinto, F., et al. (2019). High-throughput phenoty** for crop improvement in the genomics era. Plant Science, 282, 60–72.

    Article  CAS  PubMed  Google Scholar 

  • Molitor, J., Marjoram, P., & Thomas, D. (2003). Application of Bayesian clustering via Voronoi tesselations to the analysis of haplotype risk and gene map**. American Journal of Human Genetics, 73, 1368–1384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monnot, S., Desaint, H., Mary-Huard, T., et al. (2021). Deciphering the genetic architecture of plant virus resistance by GWAS, state of the art and potential advances. Cell, 10, 3080.

    Article  CAS  Google Scholar 

  • Morrell, P. L., Buckler, E. S., & Ross-Ibarra, J. (2012). Crop genomics: Advances and applications. Nature Reviews. Genetics, 13, 85–96.

    Article  CAS  Google Scholar 

  • Morris, G. P., Ramu, P., Deshpande, S. P., et al. (2013a). Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proceedings of the National Academy of Sciences, 110, 453–458.

    Article  CAS  Google Scholar 

  • Morris, G. P., Rhodes, D. H., Brenton, Z., et al. (2013b). Dissecting genome-wide association signals for loss-of-function phenotypes in sorghum flavonoid pigmentation traits. G3 Genes Genomes Genetics, 3, 2085–2094.

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller, B. S. F., de Almeida Filho, J. E., Lima, B. M., et al. (2019). Independent and Joint-GWAS for growth traits in Eucalyptus by assembling genome-wide data for 3373 individuals across four breeding populations. The New Phytologist, 221, 818–833.

    Article  PubMed  Google Scholar 

  • Myles, S., Peiffer, J., Brown, P. J., et al. (2009). Association map**: Critical considerations shift from genoty** to experimental design. Plant Cell, 21, 2194–2202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negin, B., Moshelion, M., Negin, B., & Moshelion, M. (2016). The advantages of functional phenoty** in pre-field screening for drought-tolerant crops. Functional Plant Biology, 44, 107–118.

    Article  PubMed  Google Scholar 

  • Negro, S. S., Millet, E. J., Madur, D., et al. (2019). Genoty**-by-sequencing and SNP-arrays are complementary for detecting quantitative trait loci by tagging different haplotypes in association studies. BMC Plant Biology, 19, 318.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nie, X., Huang, C., You, C., et al. (2016). Genome-wide SSR-based association map** for fiber quality in nation-wide upland cotton inbreed cultivars in China. BMC Genomics, 17, 352.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nielsen, R. (2004). Population genetic analysis of ascertained SNP data. Human Genomics, 1, 218–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nimmakayala, P., Abburi, V. L., Saminathan, T., et al. (2016a). Genome-wide diversity and association map** for capsaicinoids and fruit weight in Capsicum annuum L. Scientific Reports, 6, 38081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nimmakayala, P., Tomason, Y. R., Abburi, V. L., et al. (2016b). Genome-wide differentiation of various melon horticultural groups for use in GWAS for fruit firmness and construction of a high resolution genetic map. Frontiers in Plant Science, 7, 1646.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nordborg, M., & Tavaré, S. (2002). Linkage disequilibrium: What history has to tell us. Trends in Genetics, 18, 83–90.

    Article  CAS  PubMed  Google Scholar 

  • Nordborg, M., Hu, T. T., Ishino, Y., et al. (2005). The pattern of polymorphism in Arabidopsis thaliana. PLoS Biology, 3, e196.

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Leary, S. J., Puritz, J. B., Willis, S. C., et al. (2018). These aren’t the loci you’e looking for: Principles of effective SNP filtering for molecular ecologists. Molecular Ecology, 27, 3193–3206.

    Article  Google Scholar 

  • O’Reilly, P. F., Hoggart, C. J., Pomyen, Y., et al. (2012). MultiPhen: Joint model of multiple phenotypes can increase discovery in GWAS. PLoS One, 7, e34861.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ofner, I., Lashbrooke, J., Pleban, T., et al. (2016). Solanum pennellii backcross inbred lines (BILs) link small genomic bins with tomato traits. The Plant Journal, 87, 151–160.

    Article  CAS  PubMed  Google Scholar 

  • Olivoto, T., & Lúcio, A. D. (2020). metan: An R package for multi-environment trial analysis. Methods in Ecology and Evolution, 11, 783–789.

    Article  Google Scholar 

  • Omrani, M., Roth, M., Roch, G., et al. (2019). Genome-wide association multi-locus and multi-variate linear mixed models reveal two linked loci with major effects on partial resistance of apricot to bacterial canker. BMC Plant Biology, 19, 1–18.

    Article  Google Scholar 

  • Ong-Abdullah, M., Ordway, J. M., Jiang, N., et al. (2015). Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature, 525, 533–537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ongom, P. O., & Ejeta, G. (2018). Mating design and genetic structure of a multi-parent advanced generation intercross (MAGIC) population of sorghum (Sorghum bicolor (L.) Moench). G3 Genes Genomes Genetics, 8, 331–341.

    Article  CAS  PubMed  Google Scholar 

  • Oravecz, Z., & Muth, C. (2018). Fitting growth curve models in the Bayesian framework. Psychonomic Bulletin & Review, 25, 235–255.

    Article  Google Scholar 

  • Ozaki, K., Ohnishi, Y., Iida, A., et al. (2002). Functional SNPs in the lymphotoxin-α gene that are associated with susceptibility to myocardial infarction. Nature Genetics, 32, 650–654.

    Article  CAS  PubMed  Google Scholar 

  • Pascual, L., Desplat, N., Huang, B. E., et al. (2015). Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era. Plant Biotechnology Journal, 13, 565–577.

    Article  CAS  PubMed  Google Scholar 

  • Passioura, J. B. (2012). Phenoty** for drought tolerance in grain crops: When is it useful to breeders? Functional Plant Biology, 39, 851–859.

    Article  CAS  PubMed  Google Scholar 

  • Paterson, A. H., Lander, E. S., Hewitt, J. D., et al. (1988). Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature, 335, 721–726.

    Article  CAS  PubMed  Google Scholar 

  • Paterson, A. H., Bowers, J. E., Bruggmann, R., et al. (2009). The Sorghum bicolor genome and the diversification of grasses. Nature, 457, 551–556.

    Article  CAS  PubMed  Google Scholar 

  • Pavan, S., Marcotrigiano, A. R., Ciani, E., et al. (2017). Genoty**-by-sequencing of a melon (Cucumis melo L.) germplasm collection from a secondary center of diversity highlights patterns of genetic variation and genomic features of different gene pools. BMC Genomics, 18, 59.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pavan, S., Delvento, C., Ricciardi, L., et al. (2020). Recommendations for choosing the genoty** method and best practices for quality control in crop genome-wide association studies. Frontiers in Genetics, 11, 447.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pavan, S., Delvento, C., Mazzeo, R., et al. (2021). Almond diversity and homozygosity define structure, kinship, inbreeding, and linkage disequilibrium in cultivated germplasm, and reveal genomic associations with nut and seed weight. Horticulture Research, 8, 1–12.

    Article  Google Scholar 

  • Pearlson, G., Calhoun, V., & Liu, J. (2015). An introductory review of parallel independent component analysis (p-ICA) and a guide to applying p-ICA to genetic data and imaging phenotypes to identify disease-associated biological pathways and systems in common complex disorders. Frontiers in Genetics, 6, 276.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng, J., Richards, D. E., Hartley, N. M., et al. (1999). “Green revolution” genes encode mutant gibberellin response modulators. Nature, 400, 256–261.

    Article  CAS  PubMed  Google Scholar 

  • Peterson, J. F., Roden, D. M., Orlando, L. A., et al. (2019). Building evidence and measuring clinical outcomes for genomic medicine. The Lancet, 394, 604–610.

    Article  CAS  Google Scholar 

  • Pimenova, A. A., Raj, T., & Goate, A. M. (2018). Untangling genetic risk for Alzheimer’s disease. Biological Psychiatry, 83, 300–310.

    Article  CAS  PubMed  Google Scholar 

  • Poland, J. A., & Nelson, R. J. (2011). In the eye of the beholder: The effect of rater variability and different rating scales on QTL map**. Phytopathology, 101, 290–298.

    Article  PubMed  Google Scholar 

  • Porth, I., Klapšte, J., Skyba, O., et al. (2013). Genome-wide association map** for wood characteristics in Populus identifies an array of candidate single nucleotide polymorphisms. The New Phytologist, 200, 710–726.

    Article  CAS  PubMed  Google Scholar 

  • Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puranik, S., Sahu, P. P., Beynon, S., et al. (2020). Genome-wide association map** and comparative genomics identifies genomic regions governing grain nutritional traits in finger millet (Eleusine coracana L. Gaertn.). Plants People Planet, 2, 649–662.

    Article  Google Scholar 

  • Purcell, S., Cherny, S. S., & Sham, P. C. (2003). Genetic power calculator: Design of linkage and association genetic map** studies of complex traits. Bioinformatics, 19, 149–150.

    Article  CAS  PubMed  Google Scholar 

  • Purcell, S., Neale, B., Todd-Brown, K., et al. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 81(3), 559–575. https://doi.org/10.1086/519795

  • Quan, M., Liu, X., Du, Q., et al. (2021). Genome-wide association studies reveal the coordinated regulatory networks underlying photosynthesis and wood formation in Populus. Journal of Experimental Botany, 72, 5372–5389.

    Article  CAS  PubMed  Google Scholar 

  • Rabbi, I. Y., Udoh, L. I., Wolfe, M., et al. (2017). Genome-wide association map** of correlated traits in cassava: Dry matter and total carotenoid content. The Plant Genome, 10(3). https://doi.org/10.3835/plantgenome2016.09.0094

  • Rafalski, A. J. (2010). Association genetics in crop improvement. Current Opinion in Plant Biology, 13, 174–180.

    Article  CAS  PubMed  Google Scholar 

  • Rahman, A., Hallgrímsdóttir, I., Eisen, M., & Pachter, L. (2018). Association map** from sequencing reads using k-mers. eLife, 7, e32920.

    Article  PubMed  PubMed Central  Google Scholar 

  • Raj, A., Stephens, M., & Pritchard, J. K. (2014). fastSTRUCTURE: Variational inference of population structure in large SNP data sets. Genetics, 197, 573–589.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rakitsch, B., Lippert, C., Stegle, O., & Borgwardt, K. (2013). A Lasso multi-marker mixed model for association map** with population structure correction. Bioinformatics, 29, 206–214.

    Article  CAS  PubMed  Google Scholar 

  • Ranc, N., Muños, S., Xu, J., et al. (2012). Genome-wide association map** in tomato (Solanum lycopersicum) is possible using genome admixture of Solanum lycopersicum var. cerasiforme. G3 Genes Genomes Genetics, 2, 853–864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Razifard, H., Ramos, A., Della Valle, A. L., et al. (2020). Genomic evidence for complex domestication history of the cultivated tomato in Latin America. Molecular Biology and Evolution, 37, 1118–1132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reif, J. C., Hallauer, A. R., & Melchinger, A. E. (2005). Heterosis and heterotic patterns in maize [Zea mays L.; USA; Europe; Japan; China]. Maydica, 50, 215–223.

    Google Scholar 

  • Remington, D. L., Thornsberry, J. M., Matsuoka, Y., et al. (2001). Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proceedings of the National Academy of Sciences, 98, 11479–11484.

    Article  CAS  Google Scholar 

  • Rincent, R., Moreau, L., Monod, H., et al. (2014). Recovering power in association map** panels with variable levels of linkage disequilibrium. Genetics, 197, 375–387.

    Article  PubMed  PubMed Central  Google Scholar 

  • Risch, N., & Merikangas, K. (1996). The future of genetic studies of complex human diseases. Science, 273, 1516–1517.

    Article  CAS  PubMed  Google Scholar 

  • Robbins, M. D., Sim, S.-C., Yang, W., et al. (2011). Map** and linkage disequilibrium analysis with a genome-wide collection of SNPs that detect polymorphism in cultivated tomato. Journal of Experimental Botany, 62, 1831–1845.

    Article  CAS  PubMed  Google Scholar 

  • Rothan, C., Diouf, I., & Causse, M. (2019). Trait discovery and editing in tomato. The Plant Journal, 97, 73–90.

    Article  CAS  PubMed  Google Scholar 

  • Samineni, S., Sajja, S. B., Mondal, B., et al. (2021). MAGIC lines in chickpea: Development and exploitation of genetic diversity. Euphytica, 217, 137.

    Article  Google Scholar 

  • Santure, A. W., & Garant, D. (2018). Wild GWAS—Association map** in natural populations. Molecular Ecology Resources, 18, 729–738.

    Article  PubMed  Google Scholar 

  • Sasaki, E., Zhang, P., Atwell, S., et al. (2015). “Missing” G x E variation controls flowering time in Arabidopsis thaliana. PLoS Genetics, 11, e1005597.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sasaki, E., Köcher, T., Filiault, D. L., & Nordborg, M. (2021). Revisiting a GWAS peak in Arabidopsis thaliana reveals possible confounding by genetic heterogeneity. Heredity, 127, 245–252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauvage, C., Segura, V., Bauchet, G., et al. (2014). Genome-wide association in tomato reveals 44 candidate loci for fruit metabolic traits. Plant Physiology, 165, 1120–1132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaub, M. A., Boyle, A. P., Kundaje, A., et al. (2012). Linking disease associations with regulatory information in the human genome. Genome Research, 22, 1748–1759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schielzeth, H., Rios Villamil, A., & Burri, R. (2018). Success and failure in replication of genotype–phenotype associations: How does replication help in understanding the genetic basis of phenotypic variation in outbred populations? Molecular Ecology Resources, 18, 739–754.

    Article  PubMed  Google Scholar 

  • Schnable, P. S., Ware, D., Fulton, R. S., et al. (2009). The B73 maize genome: Complexity, diversity, and dynamics. Science, 326, 1112–1115.

    Article  CAS  PubMed  Google Scholar 

  • Schneeberger, K., Ossowski, S., Lanz, C., et al. (2009). SHOREmap: Simultaneous map** and mutation identification by deep sequencing. Nature Methods, 6, 550–551.

    Article  CAS  PubMed  Google Scholar 

  • Schon, C., Mechinger, A., Boppenmaier, J., Brunklaus-Jung, E., Herrman, R. G., & Seitzer, J. F. (1994). RELP map** in maize: Quantitative traits lociaffat test cross performance of elite European flint lines. Crop Science, 34, 378–389.

    Article  Google Scholar 

  • Sedlazeck, F. J., Lee, H., Darby, C. A., & Schatz, M. C. (2018). Piercing the dark matter: Bioinformatics of long-range sequencing and map**. Nature Reviews. Genetics, 19, 329–346.

    Article  CAS  PubMed  Google Scholar 

  • Segura, V., Vilhjálmsson, B. J., Platt, A., et al. (2012). An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nature Genetics, 44, 825–830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shang, Y., Ma, Y., Zhou, Y., et al. (2014). Biosynthesis, regulation, and domestication of bitterness in cucumber. Science, 346, 1084–1088.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, S. K., MacKenzie, K., McLean, K., et al. (2018). Linkage disequilibrium and evaluation of genome-wide association map** models in tetraploid potato. G3 Genes Genomes Genetics, 8, 3185–3202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen, X., Pettersson, M., Rönnegård, L., & Carlborg, Ö. (2012). Inheritance beyond plain heritability: Variance-controlling genes in Arabidopsis thaliana. PLoS Genetics, 8, e1002839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shenstone, E., Cooper, J., Rice, B., et al. (2018). An assessment of the performance of the logistic mixed model for analyzing binary traits in maize and sorghum diversity panels. PLoS One, 13, e0207752.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheppard, S. K., Didelot, X., Meric, G., et al. (2013). Genome-wide association study identifies vitamin B5 biosynthesis as a host specificity factor in Campylobacter. Proceedings of the National Academy of Sciences of the United States of America, 110, 11923–11927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shook, J. M., Zhang, J., Jones, S. E., et al. (2021). Meta-GWAS for quantitative trait loci identification in soybean. G3 Genes Genomes Genetics, 11, jkab117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva, F. F., Zambrano, M. F. B., Varona, L., et al. (2017). Genome association study through nonlinear mixed models revealed new candidate genes for pig growth curves. Science in Agriculture, 74, 1–7.

    Google Scholar 

  • Sim, S.-C., Van Deynze, A., Stoffel, K., et al. (2012). High-density SNP genoty** of tomato (Solanum lycopersicum L.) reveals patterns of genetic variation due to breeding, PLoS One, 7, e45520.

    Google Scholar 

  • Simko, I., Hayes, R. J., & Furbank, R. T. (2016). Non-destructive phenoty** of lettuce plants in early stages of development with optical sensors. Frontiers in Plant Science, 7, 1985.

    Article  PubMed  PubMed Central  Google Scholar 

  • Song, J., Yang, X., Resende, M. F. R., et al. (2016). Natural allelic variations in highly polyploidy Saccharum complex. Frontiers in Plant Science, 7, 804.

    Article  PubMed  PubMed Central  Google Scholar 

  • Song, B., Mott, R., & Gan, X. (2018). Recovery of novel association loci in Arabidopsis thaliana and Drosophila melanogaster through leveraging INDELs association and integrated burden test. PLoS Genetics, 14, e1007699.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sorić, B. (1989). Statistical “discoveries” and effect-size estimation. Journal of the American Statistical Association, 84, 608–610.

    Google Scholar 

  • Spindel, J. E., Dahlberg, J., Colgan, M., et al. (2018). Association map** by aerial drone reveals 213 genetic associations for Sorghum bicolor biomass traits under drought. BMC Genomics, 19, 679.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stephens, M. (2013). A unified framework for association analysis with multiple related phenotypes. PLoS One, 8, e65245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Storey, J. D. (2003). The positive false discovery rate: A Bayesian interpretation and the q-value. The Annals of Statistics, 31, 2013–2035.

    Article  Google Scholar 

  • Studer, A., Zhao, Q., Ross-Ibarra, J., & Doebley, J. (2011). Identification of a functional transposon insertion in the maize domestication gene tb1. Nature Genetics, 43, 1160–1163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su, J., Xu, K., Li, Z., et al. (2021). Genome-wide association study and Mendelian randomization analysis provide insights for improving rice yield potential. Scientific Reports, 11, 6894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sukumaran, S., & Yu, J. (2014). Association map** of genetic resources: Achievements and future perspectives. In Genomics of plant genetic resources (pp. 207–235). Springer.

    Chapter  Google Scholar 

  • Takagi, H., Uemura, A., Yaegashi, H., et al. (2013). MutMap-gap: Whole-genome resequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii. The New Phytologist, 200, 276–283.

    Article  CAS  PubMed  Google Scholar 

  • Takagi, H., Tamiru, M., Abe, A., et al. (2015). MutMap accelerates breeding of a salt-tolerant rice cultivar. Nature Biotechnology, 33, 445–449.

    Article  CAS  PubMed  Google Scholar 

  • Tamisier, L., Szadkowski, M., Nemouchi, G., et al. (2020). Genome-wide association map** of QTLs implied in potato virus Y population sizes in pepper: Evidence for widespread resistance QTL pyramiding. Molecular Plant Pathology, 21, 3–16.

    Article  CAS  PubMed  Google Scholar 

  • Tang, H., Peng, J., Wang, P., & Risch, N. J. (2005). Estimation of individual admixture: Analytical and study design considerations. Genetic Epidemiology, 28, 289–301.

    Article  PubMed  Google Scholar 

  • Tang, S., Zhao, H., Lu, S., et al. (2020). Genome- and transcriptome-wide association studies provide insights into the genetic basis of natural variation of seed oil content in Brassica napus. Molecular Plant, 14, 470–487.

    Article  PubMed  Google Scholar 

  • Tenaillon, M. I., Sawkins, M. C., Long, A. D., et al. (2001). Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proceedings of the National Academy of Sciences, 98, 9161–9166.

    Article  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative. (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408, 796–815.

    Article  Google Scholar 

  • The Potato Genome Sequencing Consortium. (2011). Genome sequence and analysis of the tuber crop potato. Nature, 475, 7355–7361.

    Article  Google Scholar 

  • The Tomato Genome Consortium. (2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485, 635–641.

    Article  Google Scholar 

  • The Wellcome Trust Case Control Consortium. (2007). Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 447, 661–678.

    Article  PubMed Central  Google Scholar 

  • Thornsberry, J. M., Goodman, M. M., Doebley, J., et al. (2001). Dwarf8 polymorphisms associate with variation in flowering time. Nature Genetics, 28, 286–289.

    Article  CAS  PubMed  Google Scholar 

  • Thurow, L. B., Gasic, K., Raseira, M. d. C. B., et al. (2020). Genome-wide SNP discovery through genoty** by sequencing, population structure, and linkage disequilibrium in Brazilian peach breeding germplasm. Tree Genetics & Genomes, 16, 1–14.

    Article  Google Scholar 

  • Tian, F., Bradbury, P. J., Brown, P. J., et al. (2011). Genome-wide association study of leaf architecture in the maize nested association map** population. Nature Genetics, 43, 159–162.

    Article  CAS  PubMed  Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B: Methodological, 58, 267–288.

    Google Scholar 

  • Tieman, D., Zhu, G., ResendeJr, M. F. R., et al. (2017). A chemical genetic roadmap to improved tomato flavor. Science, 355, 391–394.

    Article  CAS  PubMed  Google Scholar 

  • Tracy, C. A., & Widom, H. (1994). Level-spacing distributions and the Bessel kernel. Communications in Mathematical Physics, 161, 289–309.

    Article  Google Scholar 

  • Trochet, H., Pirinen, M., Band, G., et al. (2019). Bayesian meta-analysis across genome-wide association studies of diverse phenotypes. Genetic Epidemiology, 43, 532–547.

    Article  PubMed  Google Scholar 

  • Truong, H. T., Ramos, A. M., Yalcin, F., et al. (2012). Sequence-based genoty** for marker discovery and co-dominant scoring in germplasm and populations. PLoS One, 7, e37565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner, S., Armstrong, L. L., Bradford, Y., et al. (2011). Quality control procedures for genome wide association studies. Current Protocols in Human Genetics, Chapter 1, Unit1.19.

    PubMed  Google Scholar 

  • Upadhyaya, H. D., Vetriventhan, M., Deshpande, S. P., et al. (2015). Population genetics and structure of a global foxtail millet germplasm collection. The Plant Genome, 8, plantgenome2015-07.

    Article  Google Scholar 

  • Urrestarazu, J., Muranty, H., Denancé, C., et al. (2017). Genome-wide association map** of flowering and ripening periods in apple. Frontiers in Plant Science, 8, 1923.

    Article  PubMed  PubMed Central  Google Scholar 

  • van Berloo, R., Zhu, A., Ursem, R., et al. (2008). Diversity and linkage disequilibrium analysis within a selected set of cultivated tomatoes. Theoretical and Applied Genetics, 117, 89–101.

    Article  CAS  PubMed  Google Scholar 

  • Van der Waerden, B. (1952). Order tests for the two-sample problem and their power. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen / C, 55, 453–458.

    Google Scholar 

  • van Eeuwijk, F. A., Bink, M. C., Chenu, K., & Chapman, S. C. (2010). Detection and use of QTL for complex traits in multiple environments. Current Opinion in Plant Biology, 13, 193–205.

    Article  PubMed  Google Scholar 

  • VanRaden, P. (2008). Efficient methods to compute genomic predictions. Journal of Dairy Science, 91, 4414–4423.

    Article  CAS  PubMed  Google Scholar 

  • Varshney, R. K., Saxena, R. K., Upadhyaya, H. D., et al. (2017a). Whole-genome resequencing of 292 pigeonpea accessions identifies genomic regions associated with domestication and agronomic traits. Nature Genetics, 49, 1082–1088.

    Article  CAS  PubMed  Google Scholar 

  • Varshney, R. K., Shi, C., Thudi, M., et al. (2017b). Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nature Biotechnology, 35, 969–976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venter, J. C., Adams, M. D., Myers, E. W., et al. (2001). The sequence of the human genome. Science, 291, 1304–1351.

    Article  CAS  PubMed  Google Scholar 

  • Verdeprado, H., Kretzschmar, T., Begum, H., et al. (2018). Association map** in rice: Basic concepts and perspectives for molecular breeding. Plant Production Science, 21, 159–176.

    Article  CAS  Google Scholar 

  • Vidotti, M. S., Lyra, D. H., Morosini, J. S., et al. (2019). Additive and heterozygous (dis)advantage GWAS models reveal candidate genes involved in the genotypic variation of maize hybrids to Azospirillum brasilense. PLoS One, 14, e0222788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visscher, P. M. (2008). Sizing up human height variation. Nature Genetics, 40, 489–490.

    Article  CAS  PubMed  Google Scholar 

  • Visscher, P. M., & Goddard, M. E. (2019). From R.A. Fisher’s 1918 paper to GWAS a century later. Genetics, 211, 1125–1130.

    Article  PubMed  PubMed Central  Google Scholar 

  • Visscher, P. M., Brown, M. A., McCarthy, M. I., & Yang, J. (2012). Five years of GWAS discovery. American Journal of Human Genetics, 90, 7–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visscher, P. M., Wray, N. R., Zhang, Q., et al. (2017). 10 years of GWAS discovery: Biology, function, and translation. American Journal of Human Genetics, 101, 5–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitezica, Z. G., Varona, L., Legarra, A. (2013) On the additive and dominant variance and covariance of individuals within the genomic selection scope. Genetics, 195(4), 1223–1230. https://doi.org/10.1534/genetics.113.155176

  • Voichek, Y., & Weigel, D. (2020). Identifying genetic variants underlying phenotypic variation in plants without complete genomes. Nature Genetics, 52, 534–540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vounou, M., Nichols, T. E., & Montana, G. (2010). Discovering genetic associations with high-dimensional neuroimaging phenotypes: A sparse reduced-rank regression approach. NeuroImage, 53, 1147–1159.

    Article  PubMed  Google Scholar 

  • Wada, T., Oku, K., Nagano, S., et al. (2017). Development and characterization of a strawberry MAGIC population derived from crosses with six strawberry cultivars. Breeding Science, 67, 370–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Z., Gerstein, M., Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics, 10(1), 57–63. https://doi.org/10.1038/nrg2484

  • Wang, Q., Tian, F., Pan, Y., et al. (2014). A SUPER powerful method for genome wide association study. PLoS One, 9, e107684.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, S.-B., Feng, J.-Y., Ren, W.-L., et al. (2016a). Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Scientific Reports, 6, 1–10.

    Google Scholar 

  • Wang, X., Wang, H., Liu, S., et al. (2016b). Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nature Genetics, 48, 1233–1241.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Ren, M., Liu, D., et al. (2020). Large-scale identification of expression quantitative trait loci in Arabidopsis reveals novel candidate regulators of immune responses and other processes. Journal of Integrative Plant Biology, 62, 1469–1484.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, K., Guo, W., Arai, K., et al. (2017). High-throughput phenoty** of sorghum plant height using an unmanned aerial vehicle and its application to genomic prediction modeling. Frontiers in Plant Science, 8, 421.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei, X., Jackson, P. A., McIntyre, C. L., et al. (2006). Associations between DNA markers and resistance to diseases in sugarcane and effects of population substructure. Theoretical and Applied Genetics, 114, 155–164.

    Article  CAS  PubMed  Google Scholar 

  • Wei, J., Wang, A., Li, R., et al. (2018). Metabolome-wide association studies for agronomic traits of rice. Heredity, 120, 342–355.

    Article  CAS  PubMed  Google Scholar 

  • Weigel, D. (2012). Natural variation in Arabidopsis: From molecular genetics to ecological genomics. Plant Physiology, 158, 2–22.

    Article  CAS  PubMed  Google Scholar 

  • Wen, W., Li, D., Li, X., et al. (2014). Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nature Communications, 5, 3438.

    Article  PubMed  Google Scholar 

  • Wightman, D. P., Jansen, I. E., Savage, J. E., et al. (2021). A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nature Genetics, 53, 1276–1282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wold, S. (1978). Cross-validatory estimation of the number of components in factor and principal components models. Technometrics, 20, 397–405.

    Article  Google Scholar 

  • Wood, A. R., Esko, T., Yang, J., et al. (2014). Defining the role of common variation in the genomic and biological architecture of adult human height. Nature Genetics, 46, 1173–1186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood, A. R., Tyrrell, J., Beaumont, R., et al. (2016). Variants in the FTO and CDKAL1 loci have recessive effects on risk of obesity and type 2 diabetes, respectively. Diabetologia, 59, 1214–1221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright, S. (1950). Genetical structure of populations. Nature, 166, 247–249.

    Article  CAS  PubMed  Google Scholar 

  • Wu, S., Tohge, T., Cuadros-Inostroza, Á., et al. (2018). Map** the Arabidopsis metabolic landscape by untargeted metabolomics at different environmental conditions. Molecular Plant, 11, 118–134.

    Article  CAS  PubMed  Google Scholar 

  • Wu, J., Wang, L., Fu, J., et al. (2020). Resequencing of 683 common bean genotypes identifies yield component trait associations across a north–south cline. Nature Genetics, 52, 118–125.

    Article  CAS  PubMed  Google Scholar 

  • **ao, Y., Liu, H., Wu, L., et al. (2017). Genome-wide association studies in maize: Praise and stargaze. Molecular Plant, 10, 359–374.

    Article  CAS  PubMed  Google Scholar 

  • ** techniques for genome-wide association studies: A review. Journal of Advanced Research, 35, 215–230.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, Y., Li, P., Yang, Z., & Xu, C. (2017). Genetic map** of quantitative trait loci in crops. Crop Journal, 5, 175–184.

    Article  Google Scholar 

  • Yamamoto, E., & Matsunaga, H. (2021). Exploring efficient linear mixed models to detect quantitative trait locus-by-environment interactions. G3 Genes Genomes Genetics, 11, jkab119.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan, J., Shah, T., Warburton, M. L., et al. (2009). Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS One, 4, e8451.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, J., Jiang, H., Yeh, C.-T., et al. (2015a). Extreme-phenotype genome-wide association study (XP-GWAS): A method for identifying trait-associated variants by sequencing pools of individuals selected from a diversity panel. The Plant Journal, 84, 587–596.

    Article  CAS  PubMed  Google Scholar 

  • Yang, W., Guo, Z., Huang, C., et al. (2015b). Genome-wide association study of rice (Oryza sativa L.) leaf traits with a high-throughput leaf scorer. Journal of Experimental Botany, 66, 5605–5615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yano, K., Yamamoto, E., Aya, K., et al. (2016). Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nature Genetics, 48, 927–934.

    Article  CAS  PubMed  Google Scholar 

  • Ye, J., Li, W., Ai, G., et al. (2019). Genome-wide association analysis identifies a natural variation in basic helix-loop-helix transcription factor regulating ascorbate biosynthesis via D-mannose/L-galactose pathway in tomato. PLoS Genetics, 15, e1008149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yengo, L., Sidorenko, J., Kemper, K. E., et al. (2018). Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Human Molecular Genetics, 27, 3641–3649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeo, I., & Johnson, R. A. (2000). A new family of power transformations to improve normality or symmetry. Biometrika, 87, 954–959.

    Article  Google Scholar 

  • Yu, J., & Buckler, E. S. (2006). Genetic association map** and genome organization of maize. Current Opinion in Biotechnology, 17, 155–160.

    Article  CAS  PubMed  Google Scholar 

  • Yu, J., Arbelbide, M., & Bernardo, R. (2005). Power of in silico QTL map** from phenotypic, pedigree, and marker data in a hybrid breeding program. Theoretical and Applied Genetics, 110, 1061–1067.

    Article  CAS  PubMed  Google Scholar 

  • Yu, J. J., Pressoir, G., Briggs, H., et al. (2006). A unified mixed-model method for association map** that accounts for multiple levels of relatedness. Nature Genetics, 38, 203–208.

    Article  CAS  PubMed  Google Scholar 

  • Yu, J., Holland, J. B., McMullen, M. D., & Buckler, E. S. (2008). Genetic design and statistical power of nested association map** in maize. Genetics, 178, 539–551.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yugi, K., Kubota, H., Hatano, A., & Kuroda, S. (2016). Trans-omics: How to reconstruct biochemical networks across multiple “omic” layers. Trends in Biotechnology, 34, 276–290.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., & Qi, Y. (2021). Genetic architecture affecting maize agronomic traits identified by variance heterogeneity association map**. Genomics, 113, 1681–1688.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z., Buckler, E. S., Casstevens, T. M., & Bradbury, P. J. (2009). Software engineering the mixed model for genome-wide association studies on large samples. Briefings in Bioinformatics, 10, 664–675.

    Article  PubMed  Google Scholar 

  • Zhang, Z., Ersoz, E., Lai, C.-Q., et al. (2010). Mixed linear model approach adapted for genome-wide association studies. Nature Genetics, 42, 355–360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, D., Bai, G., Hunger, R. M., et al. (2011). Association study of resistance to soilborne wheat mosaic virus in US winter wheat. Phytopathology, 101, 1322–1329.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Zhao, J., Xu, Y., et al. (2015). Genome-wide association map** for tomato volatiles positively contributing to tomato flavor. Frontiers in Plant Science, 6, 1042.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, L., Su, W., Tao, R., et al. (2017a). RNA sequencing provides insights into the evolution of lettuce and the regulation of flavonoid biosynthesis. Nature Communications, 8, 2264.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, X., Mallick, H., Tang, Z., et al. (2017b). Negative binomial mixed models for analyzing microbiome count data. BMC Bioinformatics, 18, 4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, S., Chen, X., Lu, C., et al. (2018). Genome-wide association studies of 11 agronomic traits in cassava (Manihot esculenta Crantz). Frontiers in Plant Science, 9, 503.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, M. -Y., Xue, C., Hu, H., et al. (2021). Genome-wide association studies provide insights into the genetic determination of fruit traits of pear. Nature Communications, 12, 1–10.

    Google Scholar 

  • Zhao, K., Aranzana, M. J., Kim, S., et al. (2007). An Arabidopsis example of association map** in structured samples. PLoS Genetics, 3, e4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao, J., Xu, Y., Ding, Q., et al. (2016). Association map** of main tomato fruit sugars and organic acids. Frontiers in Plant Science, 7, 1286.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao, J., Sauvage, C., Zhao, J., et al. (2019). Meta-analysis of genome-wide association studies provides insights into genetic control of tomato flavor. Nature Communications, 10, 1–12.

    Google Scholar 

  • Zheng, C., Boer, M. P., & van Eeuwijk, F. A. (2018). Accurate genotype imputation in multiparental populations from low-coverage sequence. Genetics, 210, 71–82.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou, X., & Stephens, M. (2012). Genome-wide efficient mixed-model analysis for association studies. Nature Genetics, 44, 821–824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, X., Carbonetto, P., & Stephens, M. (2013). Polygenic modeling with Bayesian sparse linear mixed models. PLoS Genetics, 9, e1003264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, Y., Srinivasan, S., Mirnezami, S. V., et al. (2019). Semiautomated feature extraction from RGB images for sorghum panicle architecture GWAS. Plant Physiology, 179, 24–37.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, C., Gore, M., Buckler, E. S., & Yu, J. (2008). Status and prospects of association map** in plants. The Plant Genome, 1, 5–20.

    Article  CAS  Google Scholar 

  • Zhu, G., Wang, S., Huang, Z., et al. (2018). Rewiring of the fruit metabolome in tomato breeding. Cell, 172, 249–261.e12.

    Article  CAS  PubMed  Google Scholar 

  • Zimin, A. V., Puiu, D., Hall, R., et al. (2017). The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum. Gigascience, 6, gix097.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathilde Causse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Desaint, H., Hereil, A., Causse, M. (2023). Genome-Wide Association Study: A Powerful Approach to Map QTLs in Crop Plants. In: Raina, A., Wani, M.R., Laskar, R.A., Tomlekova, N., Khan, S. (eds) Advanced Crop Improvement, Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-031-28146-4_15

Download citation

Publish with us

Policies and ethics

Navigation