Perceptions on Disease and Pest Status of Major Cultivated Crops in Indian Himalayas Under Changing Climate

  • Chapter
  • First Online:
Adapting to Climate Change in Agriculture-Theories and Practices

Abstract

Agriculture in Indian Himalayan region is basically subsistence farming challenged by a variety of biotic and abiotic stresses. Himalayas are considered as chief hotspot for majority of diseases and insect-pests which are endemic in nature. In recent years, the region experienced fluctuations in disease and insect-pest scenario. Changing climatic conditions not only influence the phenology of insect-pests and diseases but also their time of appearance/emergence consequently favoring their increased spread and damage potential. Rice blast and brown leaf spot diseases of rice are endemic in nature and their occurrence in particular season depends on prevailing weather conditions owing to its severity. False smut and leaf scald diseases were considered as minor and now become major diseases for rice cultivation. In wheat, in addition to yellow and brown rust, black rust has been observed since last year. Similarly, with respect to insect-pests attacking hill crops, minor pests becoming major has become a common phenomenon. Recent past experienced an outbreak of brown plant hoppers in rice, prolonged emergence periods of whitegrubs, increased incidences of shoot flies in different crops, which clearly explains the phenomenon. The major cause of these outbreaks can be explained by the alterations in microclimate regimes which in turn under the direct influence of changing climates and altered abiotic environments experienced over the globe. This chapter reviews pest and disease dynamics in relation to the magnitude of variations observed in climatological data. The climate change experienced by Indian Himalayas is severe which is already evidenced as aberrations in rainfall, increased drought years, cold and terminal heat stresses and extreme weather events. Being biological entities, crops and associated insect pests, pollinators and diseases are bound to adjust to these anomalies. In view of this, the chapter also discusses the likely to be changes experienced by the agriculture in Indian Himalayas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aggarwal, P. K. (2003). Impact of climate change on Indian agriculture. Journal of Plant Biology, 30, 189–198.

    Google Scholar 

  • Aggarwal, P. K. (2008). Global climate change and Indian agriculture: Impacts, adaptation and mitigation. Indian Journal of Agricultural Sciences, 78, 911–919.

    Google Scholar 

  • Aggarwal, P. K., & Sinha, S. K. (1993). Effect of probable increase in carbon dioxide and temperature on productivity of wheat in India. Journal of Agricultural Meteorology, 48, 811–814.

    Article  Google Scholar 

  • Ahonsi, M. O., Adeoti, A. A., Erinle, I. D., Alegbejo, T. A., Singh, B. N., & Sy, A. A. (2000). Effect of variety and sowing date on false smut incidence in upland rice in Edo state, Nigeria. International Rice Research Notes, 25, 14.

    Google Scholar 

  • Anonymous. (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

    Google Scholar 

  • Anonymous. (2019). First report of rust disease in Parthenium weed from Uttarakhand hills, India. ICAR-VPKAS Newsletter. 23(1), 4.

    Google Scholar 

  • Bali, R., Agarwal, K. K., Ali, S. N., & Srivastava, P. (2010). Is the recessional pattern of Himalayan glaciers suggestive of anthropogenically induced global warming? Arabian Journal of Geosciences, 4(7–8), 1087–1093.

    Google Scholar 

  • Bawa, K. S., Koh, L. P., Lee, T. M., Liu, J., & Ramakrishnan, P. (2010). China, India, and the environment. Science, 327, 1457–1459.

    Article  CAS  PubMed  Google Scholar 

  • Bebber, D. P., Ramotowski, M. A., & Gurr, S. J. (2013). Crop pests and pathogens move polewards in a warming world. Nature Climate Change, 3(11), 985.

    Article  Google Scholar 

  • Bhatt, J. C. (1992). Epidemiology of foliar blast of rice in Uttar Pradesh hills. Oryza, 29, 350–354.

    Google Scholar 

  • Bhutiyani, M. R., Kale, V. S., & Pawar, N. J. (2007). Long-term trends in maximum, minimum and mean annual air temperatures across the Northwestern Himalaya during the twentieth century. Climatic Change, 85(1–2), 159–177.

    Article  Google Scholar 

  • Boland, G. J., Melzer, M. S., Hopkin, A., Higgins, V., & Nassuth, A. (2004). Climate change and plant diseases in Ontario. Canadian Journal of Plant Pathology, 26, 335–350.

    Article  Google Scholar 

  • Carter, T. R., Saarikko, R. A., & Niemi, K. J. (1996). Assessing the risks and uncertainties of regional crop potential under a changing climate in Finland. Agricultural and Food Science, 5, 329–350.

    Article  Google Scholar 

  • Chandel, R. S., Pathania, M., Verma, K. S., Bhatacharyya, B., Vashisth, S., & Kumar, V. (2015). The ecology and control of potato whitegrubs of India. Potato Research, 58(2), 147–164.

    Article  CAS  Google Scholar 

  • Dash, S. K., & Hunt, J. C. R. (2007). Variability of climate change in India. Current Science, 93, 782–788.

    Google Scholar 

  • Evans, A. F., & Perry, R. N. (2009). Survival mechanisms. In R. N. Perry, M. Moens, & J. L. Starr (Eds.), Root knot nematodes (pp. 201–219). CABI.

    Chapter  Google Scholar 

  • Fand, B. B., Shashank, P. R., Suroshe, S. S., Chandrashekar, K., Meshram, N. M., & Timmanna, H. N. (2020). Invasion risk of the South American tomato pinworm Tutaabsoluta (Meyrick) (Lepidoptera: Gelechiidae) in India: Predictions based on MaxEnt ecological niche modelling. International Journal of Tropical Insect Science, 1–11.

    Google Scholar 

  • Ghini, R., Hamada, E., Junior, M. J. P., Marengo, J. A., & Goncalves, R. R. V. (2008). Risk analysis of climate change on coffee nematodes and leaf miner in Brazil. Pesquisa Agropecuária Brasileira, 43, 187–194.

    Article  Google Scholar 

  • Heong, K. L., Song, Y. H., Pimamarn, S., Zhang, R., & Bae, S. D. (1995). Global warming and rice arthropod communities. In S. Peng (Ed.), Climate change and rice (pp. 326–335). Springer-Verlag.

    Chapter  Google Scholar 

  • Hooda, K. S., Pant, S. K., Mahajan, V., Khati, P., & Bhatt, J. C. (2009). A first record of zonate leaf spot in maize from Uttarakhand, India. Journal of Mycology and Plant Pathology, 39, 541.

    Google Scholar 

  • Jablonska, B., Ammiraju, J. S. S., Bhattarai, K. K., Mantelin, S., Ilarduya, O. M., Roberts, P. A., & Kaloshian, I. (2007). The Mi-9 gene from Solanum arcanum conferring heat-stable resistance to root-knot nematodes is a homolog of Mi1. Plant Physiology, 143, 1044–1054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kala, C. P. (2013). Climate change and challenges of biodiversity conservation. In C. P. Kala, & C. S. Silori (Eds.), Biodiversity, communities and climate change (pp. 259–269). The Energy and Resources Institute.

    Google Scholar 

  • Kant, L., Jain, S. K., Mahanta, D., Agrawal, P. K., & Bhatt, J. C. (2011). Do winter x spring wheat derivatives have the capability to tolerate the climate change conditions? In 3rd international group meeting on wheat productivity enhancement under changing climate (283 p.), February 9–12.

    Google Scholar 

  • Kulkarni, A. V., Bahuguna, I. M., Rathore, B. P., Singh, S. K., Randhawa, S. S., Sood, R. K., & Dhar, S. (2007). Glacial retreat in Himalaya using Indian Remote Sensing satellite data. Current Science, 69, 74.

    Google Scholar 

  • Kumar, K., Dumka, R. K., Miral, M. S., Satyal, G. S., & Pant, M. (2008a). Estimation of retreat rate of Gangotri glacier using rapid static and kinematic GPS survey. Current Science, 94, 258–262.

    Google Scholar 

  • Kumar, K., Joshi, S., & Joshi, V. (2008b). Climate variability, vulnerability, and co** mechanism in Alaknanda catchment, Central Himalaya, India. Ambio, 37, 286–291.

    Article  PubMed  Google Scholar 

  • Mall, R. K., & Aggarwal, P. K. (2002). Climate change and rice yields in diverse agro-environments of India: Evaluation of impact assessment models. Climate Change, 52, 315–330.

    Article  Google Scholar 

  • Marseille, A. G., Bourgeois, G., Brodeur, J., & Mimee, B. (2019). Simulating the impacts of climate change on soybean cyst nematode and the distribution of soybean. Agricultural and Forest Meteorology, 264, 178–187.

    Article  Google Scholar 

  • Mishra, K. K., & Rajashekara, H. (2019). Important diseases of wheat and their management. In J. Stanley, K. K. Mishra, A. R. N. S. Subbanna, H. Rajashekara, & A. Pattanayak (Eds.), Integrated pest management in major crops (pp. 49–59). ICAR-VPKAS.

    Google Scholar 

  • NATCOM. (2004). India’s initial national communication to UNFCCC, Ministry of Environment & Forests, Government of India.

    Google Scholar 

  • Neilson, R., & Boag, B. (1996). The predicted impact of possible climatic change on virus-vector nematodes in Great Britain. European Journal of Plant Pathology, 102, 193–199.

    Article  Google Scholar 

  • Niblack, T. L. (2005). Soybean cyst nematode management reconsidered. Plant Disease, 89(10), 1020–1026.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen, U. N., Wall, D. H., Adams, B. J., & Virginia, R. A. (2011). Antarctic nematode communities: Observed and predicted responses to climate change. Polar Biology, 34, 1701–1711.

    Article  Google Scholar 

  • Panday, S. C., Bisht, K. K. S., Srivastava, A. K., & Gupta, H. S. (2009). Climate change in mid Himalaya. In 4th world congress on conservation agriculture, innovations for improving efficiency, equity and environment (417 p.), New Delhi.

    Google Scholar 

  • Panday, S. C., Singh, R. D., & Srivastava, A. K. (2003). Change in climate and its consequence on crop management and production. In 6th agricultural science congress (203 p). Multi-Enterprise Systems for Viable Agriculture. IISS, Bhopal.

    Google Scholar 

  • Pandi, G. G. P., Chander, S., Singh, M. P., & Pathak, H. (2018). Impact of elevated CO2 and temperature on brown planthopper population in rice ecosystem. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 88(1), 57–64.

    Article  Google Scholar 

  • Papadopoulou, J., & Triantaphyllou, A. C. (1982). Sex differentiation in Meloidogyne incognita and anatomical evidence of sex reversal. Journal of Nematology, 14, 549–566.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paroda, R. S., & Kumar, P. (2000). Food production and demand in South Asia. Agricultural Economics Research Review, 13, 1–24.

    Google Scholar 

  • Patel C. (2016). Preliminary studies on seasonal incidence and growth parameters of Helicoverpa armigera (Hubner) on wheat at Pantnagar (108 p). Thesis M.Sc., G.B. Pant University of Agriculture and Technology, Pantnagar.

    Google Scholar 

  • Prasad, J. S., & Somasekhar, N. (2009). Nematode pests of rice: Diagnosis and management (p. 29). Technical Bulletin No. 38, Directorate of Rice Research (ICAR), Hyderabad.

    Google Scholar 

  • Prasad, P., Savadi, S., Bhardwaj, S. C., & Gupta, P. K. (2020). The progress of leaf rust research in wheat. Fungal Biology, 124(6), 537–550. https://doi.org/10.1016/j.funbio.2020.02.013

    Article  CAS  PubMed  Google Scholar 

  • Rajashekara, H., Mishra, K. K., & Pattanayak, A. (2019). Blast disease in hill crops: Symptoms, identification and management. In J. Stanley, K. K. Mishra, A. R. N. S. Subbanna, H. Rajashekara, & A. Pattanayak (Eds.), Integrated pest management in major crops (pp. 38–48). ICAR-VPKAS.

    Google Scholar 

  • Raji, P., Sumiya, K. V., Dhanya, S., Remya, K., & Narayanankutty, M. C. (2016). Screening of rice varieties and in vitro evaluation of botanicals against false smut pathogen, Ustilaginoidea virens. International Journal of Agricultural Science Research, 6(2), 79–86.

    Google Scholar 

  • Rao, G. D., & Sinha, S. K. (1994). Impact of climatic change on simulated wheat production in India. In C. Rosenzweig & I. Iglesias (Eds.), Implications of climate change for international agriculture: Crop modelling study (pp. 1–10). EPA.

    Google Scholar 

  • Rebetez, M., & Dobbertin, M. (2004). Climate change may already threaten Scots pine stands in the Swiss Alps. Theoretical and Applied Climatology, 79, 1–9.

    Article  Google Scholar 

  • Renton, A. (2009). Suffering the science: Climate change, people and poverty. Oxfam briefing No. 130. Oxford: Oxfam International.

    Google Scholar 

  • Rogers, H. H., Runion, G. B., & Krupa, S. V. (1994). Plant responses to atmospheric CO2 enrichment with an emphasis on roots and the rhizosphere. Environmental Pollution, 83, 155–189.

    Article  CAS  PubMed  Google Scholar 

  • Rosenzweig, C., & Liverman, D. (1992). Predicted effects of climate change on agriculture: A comparison of temperate and tropical regions. In S. K. Dalam, & S. K. Majumdar (Ed.), Dalam global climate change: Implications, challenges, and mitigation measures (pp. 342–361). Pennsylvania: The Pennsylvania Academy of Sciences.

    Google Scholar 

  • Ruess, L., Michelsen, A., Schmidt, I. K., & Jonassonm, S. (1999). Simulated climate change affecting microorganisms, nematode density and biodiversity in subarctic soils. Plant and Soil, 212, 63–73.

    Article  CAS  Google Scholar 

  • Samra, J. S., & Singh, G. (2002). Drought management strategies (68 p). Indian Council of Agricultural Research.

    Google Scholar 

  • Sanghera, G. S., Ahanger, M. A., Kashayp, S. C., Bhat, Z. A., Rather, A. G., & Parray, G. A. (2012). False smut of rice (Ustilaginoidea virens) under temperate agro-climatic condition of Kashmir, India. Elixir Bio Tech, 49, 9827–9830.

    Google Scholar 

  • Saseendran, S. A., Singh, K. K., Rathore, L. S., Singh, S. V., & Sinha, S. K. (2000). Effects of climate change on rice production in the tropical humid climate of Kerala, India. Clim Chang, 44, 495–514.

    Article  Google Scholar 

  • Savary, S., Castilla, N. P., Elazegui, F. A., McLaren, C. G., Ynalvez, M. A., & Teng, P. S. (1995). Direct and indirect effects of nitrogen supply and disease source structure on rice sheath blight spread. Phytopathology, 85, 959–965.

    Article  Google Scholar 

  • Schild, A. (2008). ICIMOD’s position on climate change and mountain systems: The case of the Hindu Kush-Himalayas. Mountain Research and Development, 28(3), 328–331.

    Article  Google Scholar 

  • Shrestha, U. B., Gautam, S., & Bawa, K. S. (2012). Widespread climate change in the Himalayas and associated changes in local ecosystems. PLoS ONE, 7(5), e36741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, A. K., Ngachan, S. V., Meghalaya, U., Rawal, R., Singh, K. K., & Sathapathy, S. (2010). Food security and climate change in Himalayan region: Status and strategies for livelihood improvement. www.bhutanclimatesummit.org.bt. Assessed October 14, 2012.

  • Singh, P., Mazumdar, P., Harikrishna, J. A., & Babu, S. (2019). Sheath blight of rice: A review and identification of priorities for future research. Planta, 250, 1387–1407.

    Article  CAS  PubMed  Google Scholar 

  • Somasekhar, N., & Prasad, J. S. (2009). Root-knot nematode Meloidogyne graminicola—An emerging threat to rice cultivation. DRR Newsletter, 7(4), 3–4.

    Google Scholar 

  • Stanley, J., Aditya, J. P., Bhatt, J. C., Pandey, S. C., & Agrawal, P. K. (2009). Change in pest spectrum of rice under changing climatic situations in NW Himalayan hills. In National conference on pest biodiversity in rice and their management under changed climate, CRRI, Cuttack, India.

    Google Scholar 

  • Stoeckli, S., Hirschi, M., Spirig, C., Calanca, P., Rotach, M. W., & Samietz, J. (2012). Impact of climate change on voltinism and prospective diapause induction of a global pest insect–Cydia pomonella (L.). PLOS ONE, 7(4), 1–9.

    Google Scholar 

  • Sushil, S. N., Pant, S. K., & Bhatt, J. C. (2004). Light trap catches of white grub and its relation with climatic factors. Ann Plant Prot Sci, 12, 254–256.

    Google Scholar 

  • Tzortzakakis, E. A., & Trudgill, D. L. (2005). A comparative study of the thermal time requirements for embryogenesis in Meloidogyne javanica and M. incognita. Nematology, 7, 313–315.

    Article  Google Scholar 

  • UCCC. (2011). Uttarakhand centre for climate change. Interim Report. Kumaon University, Nainital. www.ucccku.com. Assessed November, 14 2011.

  • Upreti, D. K. (2010). Himalayan lichens as an indicator of climate change. In International workshop on mountain biodiversity and impacts of climate change with special reference to Himalayan biodiversity Hotspot, G. B. PIHED, Kosi-Katarmal, Uttarakhand, pp. 90–95.

    Google Scholar 

  • Vaish, S. S., Bilal, A. S., & Prakash, K. (2011). First documentation on status of barley diseases from the high altitude cold arid Trans-Himalayan Ladakh region of India. Crop Protection, 30, 1129–1137.

    Article  Google Scholar 

  • Weaver, H. J., Hawdon, J. M., & Hoberg, E. P. (2010). Soiltransmitted helminthiases: Implications of climate change and human behavior. Trends in Parasitology, 26, 574–581.

    Article  PubMed  Google Scholar 

  • Xu, J., Grumbine, R., Shrestha, A., Eriksson, M., & Yang, X. (2009). The melting Himalayas: Cascading effects of climate change on water, biodiversity, and livelihoods. Conservation Biology, 23, 520–530.

    Article  CAS  PubMed  Google Scholar 

  • Yeates, G. W., Newton, P. C. D., & Ross, D. J. (1999). Response of soil nematode fauna to naturally elevated CO2 levels influenced by soil pattern. Nematology, 1, 285–293.

    Article  Google Scholar 

  • Yeates, G. W., Newton, P. C. D., & Ross, D. J. (2003). Significant changes in soil microfauna in grazed pasture under elevated carbon dioxide. Biology and Fertility of Soils, 38, 319–326.

    Article  Google Scholar 

  • Yeates, G. W., Tate, K. R., & Newton, P. C. D. (1997). Response of the fauna of a grassland soil to doubling of atmospheric carbon dioxide concentration. Biology and Fertility of Soils, 25, 307–315.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, K.K. et al. (2024). Perceptions on Disease and Pest Status of Major Cultivated Crops in Indian Himalayas Under Changing Climate. In: Sheraz Mahdi, S., Singh, R., Dhekale, B. (eds) Adapting to Climate Change in Agriculture-Theories and Practices. Springer, Cham. https://doi.org/10.1007/978-3-031-28142-6_4

Download citation

Publish with us

Policies and ethics

Navigation