Strategies for Sustainable Climate Smart Livestock Farming

  • Chapter
  • First Online:
Adapting to Climate Change in Agriculture-Theories and Practices

Abstract

Climate Smart Farming (CSF) emphasize on sustaining the farming by creating resilience in the practices through reorientation or transformation in the ambit of climate change scenario. Climate change is a recent phenomenon which is affecting all farming types globally. The ill-effects of climate change are evident through surging temperatures, forest fires, flash floods, droughts, etc. Livestock being an interwoven part of the ecological balance is also witnessing measurable effects of climate change. Reduction in feed resource efficiency, outbreak of diseases, heat stress, breeding problems, reduction in production attributes, etc. are the direct measurable effects of climate change on livestock. Unavailability of feed and fodder resources, shrinking grazing lands, production of green-house gases (GHGs), competition for space with agriculture, etc. can be considered as indirect effects. Therefore, for mitigating effects of climate change on livestock production and building resilience among the livestock, there is imminent need to draft strategies for Climate Smart Livestock Farming (CSLF). The strategies are detailed in the chapter and comprises of precision livestock farming, integrated farming, improving resource use efficiency, building resilience in livestock, optimum nutrition, heat amelioration, breeding management, housing management, manure management, reducing influx of GHGs into environment, utilization of digital technologies and strengthening extension advisory services. These strategies should be adopted to mitigate the effect of climate change on livestock. These strategies can reduce the vulnerabilities and expedite the process of building resilience in livestock.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad, S., Kour, G., Singh, A., & Gulzar, M. (2019). Animal genetic resources of India—An overview. International Journal of Livestock Research, 9(3), 1–12. https://doi.org/10.5455/ijlr.20181025013931

    Article  Google Scholar 

  • Altieri, M. A. (2002). Agro-ecology: The science of natural resource management for poor farmers in marginal environments. Agriculture, Ecosystems & Environment, 93(1), 1–24.

    Article  Google Scholar 

  • Altieri, M. A., Funes-Monzote, F. R., & Petersen, P. (2012). Agro-ecologically efficient agricultural systems for smallholder farmers: Contributions to food sovereignty. Agronomy for Sustainable Development, 32(1), 1–13.

    Article  Google Scholar 

  • Behera, R., Rai, S., Sathpathy, D., Sahu, A., Karunakaran, M., Talokdar, A., Singh, A., & M & al, A. (2019). Climate smart livestock production. Innovative Farming, 4(1), 015–018.

    Google Scholar 

  • Bell, D. D. (2002). Waste management. In D. D. Bell & W. D. Weaver, Jr., (Eds.), Chicken meat & egg production (5th edn). Kluwer Academic publisher.

    Google Scholar 

  • Bell, M. J., Wall, E., Russell, G., Simm, G., & Stott, A. W. (2011). The effect of improving cow productivity, fertility, & longevity on the global warming potential of dairy systems. Journal of Dairy Sciences, 94, 3662–3678.

    Article  CAS  Google Scholar 

  • De, D., & Singh, G. P. (2001).Monensin enriches UMMP supplementation on in vitro methane production in crossbred calves. In Proceedings of the Tenth Animal Nutritional Conference (Abstract papers), (p. 161). Animal Nutrition Society of India, ICAR-NDRI, Karnal, India.

    Google Scholar 

  • Eigenberg, R. A., Brown-Brandl, T. M., & Nienaber, J. A. (2007). Development of a livestock weather safety monitor for feedlot cattle. Applied Engineering in Agriculture, 23(5), 657–660.

    Article  Google Scholar 

  • FAO. (2006). Cereal Supply & Demand Brief. http://www.fao.org/worldfoodsituation/csdb/en/

  • FAO. (2013a). ‘Module 8: Climate-smart livestock’ in climate-smart agriculture sourcebook, FAO, Rome, Italy.

    Google Scholar 

  • FAO. (2013b). Climate-smart agriculture; source book. Food & Agriculture Organization of the United Nations, Rome, Italy.

    Google Scholar 

  • Garnett, T. (2009). Livestock-related greenhouse gas emissions: Impacts & options for policymakers. Environmental Science Policy, 12, 491–503.

    Article  CAS  Google Scholar 

  • Gerber, P., et al. (2013). Tackling climate change through livestock: A global assessment of emissions & mitigation opportunities. FAO.

    Google Scholar 

  • Gerber, P. J., Mottet, A., Opio, C. I., Falcucci, A., & Teillard, F. (2015). Environmental impacts of beef production: Review of challenges & perspectives for durability. Meat Science, 109, 2–12.

    Article  PubMed  Google Scholar 

  • Henuk, Y. L. (2001). Nutrient adjustments of the diets fed to cage & barn laying hens to decrease waste. Ph.D. Thesis, University of Queensland.

    Google Scholar 

  • Hoffman, M., & Vogel, C. (2008). Climate change impacts on African Rangelands. Rangelands, 30, 12–17.

    Article  Google Scholar 

  • Jha, A. K., Singh, K., Sharma, C., Singh, S. K., & Gupta, P. K. (2011). Assessment of methane & nitrous oxide emissions from livestock in India. Journal of Earth Science & Climatic Change, 2(1).

    Google Scholar 

  • Kadzere, C. T. (2019). Towards climate-smart livestock farming. Farmer’s Weekly, 19016, 6–7.

    Google Scholar 

  • Krishnan, G., Bagath, M., Pragna, P., Vidya, M. K., Aleena, J., Archana, P. R., & Bhatta, R. (2017). Mitigation of the heat stress impact in livestock reproduction. Theriogenology, 8, 8–9.

    Google Scholar 

  • Kumar, P., Singh, A., & Kumar, D. (2020). An overview of working models & approaches to climate smart livestock farming. IJLSAS, 2(1), 28–36.

    Google Scholar 

  • Kumar, S., Prasad, K. D., & Deb, A. R. (2004). Seasonal prevalence of different ectoparasites infecting cattle & buffaloes. BAU Journal of Research, 16(1), 159–163.

    Google Scholar 

  • Lipper, L., et al. (2014). Climate smart agriculture for food security. Nature Climate Change, 4, 1068–1072.

    Article  Google Scholar 

  • Moss, A. R. (1994). Methane production by ruminants—Literature review of Dietary manipulation to reduce methane production & Laboratory procedures for estimating methane potential of diets. Nutrition Abstracts and Reviews Series B, 64, 786–806.

    Google Scholar 

  • Nayak, P. K. et al. (2018). Integrated rice-based crop livestock agroforestry system: An coefficient & climate resilient agricultural practice for small & marginal farmers. In: Extended Summaries in 3rd ARRW International Symposium, Feb 6–9 at NRRI, Cuttack (pp. 235–236).

    Google Scholar 

  • Patra, A. K. (2017). Accounting methane & nitrous oxide emissions, & carbon footprints of livestock food products in different states of India. Journal of Cleaner Production, 162, 678–686.

    Article  CAS  Google Scholar 

  • Pearce, W., Holmberg, K., Hellsten, I., & Nerlich, B. (2014). Climate change on Twitter: Topics, communities & conversations about the 2013 IPCC Working Group 1 report. PLoS ONE, 9(4), e94785.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scheehle, E. (2002). Emissions & projections of non-CO2 Green House gases from develo** countries 1990–2020 (p. 73).

    Google Scholar 

  • Sharma, S., Bhattacharya, A., & Garg, A. (2006). Greenhouse gas emission from India: A perspective. Current Science, 90(3), 326–333.

    Google Scholar 

  • Singh, A., Kumar, P., Kumar, H., Neeraj, A., Kumar, P., & Kour, G. (2020). Status of livestock insurance in India & a complete guide: An evidence-based review. International Journal of Livestock Research, 10(5), 8–19. https://doi.org/10.5455/ijlr.20200224090417

    Article  Google Scholar 

  • Singh, A., & Rashid, M. (2017). Impact of animal waste on environment, its managemental strategies & treatment protocols to reduce environmental contamination. Veterinary Science Research Journal, 8(1&2), 1–12. https://doi.org/10.15740/HAS/VSRJ/8.1&2/1-12

    Article  Google Scholar 

  • Singh, A., Tiwari, R., & Dutt, T. (2020). Augmentation of farmers’ income in India through sustainable waste management techniques. Waste Management & Research, Online First. https://doi.org/10.1177/0734242X20953892

    Article  Google Scholar 

  • Singh, A., Tiwari, R., & Dutt, T. (2021). An ICT driven intervention for transforming waste to wealth: Methodic development & assessment of IVRI-Waste Management Guide App. Journal of Material Cycles & Waste Management, Online First.https://doi.org/10.1007/s10163-021-01236-1

  • Singh, A., Tiwari, R., Joshi, P., & Dutt, T. (2020c). Insights into organic waste management practices followed by dairy farmers of Ludhiana District, Punjab: Policy challenges & solutions. Waste Management & Research, 38(3), 291–299. https://doi.org/10.1177/0734242X19886632

    Article  Google Scholar 

  • Singhal, K. K., & Mohini, M. (2002). Uncertainty reduction in methane & nitrous oxide gases emission from livestock in India (p. 62). Project report, Dairy Cattle Nutrition Division, National Dairy Research Institute, Karnal.

    Google Scholar 

  • Singhal, K. K., Mohini, M., Jha, A. K., & Gupta, P. K. (2005). Methane emission estimates from enteric fermentation in Indian livestock: Dry matter intake approach. Current Science, 88(1), 119–127.

    CAS  Google Scholar 

  • Sirohi, S., & Michaelowa, A. (2007). Sufferer & cause: Indian livestock & climate change. Climatic Change, 85, 285–298.

    Article  CAS  Google Scholar 

  • Sloan, D. R., Kidder, G., & Jacobs, R. D. (2008). Poultry manure as a fertilizer. University of Florida.

    Google Scholar 

  • Srivastava, A. K., & Garg, M. R. (2002). Use of sulfur hexafluoride tracer technique for measurement of methane emission from ruminants. Indian Journal of Dairy Science, 55, 36–39.

    CAS  Google Scholar 

  • Thornton, P. (2010). Livestock production: Recent trends, future prospects. Philosophical Transactions of the Royal Society B, 365, 2853–2867.

    Article  Google Scholar 

  • Thornton, P., van de Steeg, J., Notenbaert, M. H., & Herrero, M. (2009). The impacts of climate change on livestock & livestock systems in develo** countries: A review of what we know & what we need to know. Agriculture Systems, 101, 113–127.

    Article  Google Scholar 

  • Tripathi, R., & Bisen, J. P. (2019). Climate resilient agricultural technologies for future. Training manual, model training course on climate resilient agricultural technologies for future, ICAR-National Rice Research Institute, Cuttack (pp 1–102).

    Google Scholar 

  • Upadhaya, R. C., Ashutosh, A. K., Gupta, S. K., Gupta, S. V., Singh, S. V., & Rani, N. (2009). Inventory of methane emission from livestock in India. In P. K. Aggarwal (Ed.), Global climate change & Indian agriculture. Case studies from the ICAR Network project. ICAR (pp. 117–122).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. S. Jadoun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, B., Singh, A., Jadoun, Y.S., Bhadauria, P., Kour, G. (2024). Strategies for Sustainable Climate Smart Livestock Farming. In: Sheraz Mahdi, S., Singh, R., Dhekale, B. (eds) Adapting to Climate Change in Agriculture-Theories and Practices. Springer, Cham. https://doi.org/10.1007/978-3-031-28142-6_16

Download citation

Publish with us

Policies and ethics

Navigation