An Energy-Aware Airborne Dynamic Data-Driven Application System for Persistent Sampling and Surveillance

  • Chapter
  • First Online:
Handbook of Dynamic Data Driven Applications Systems
  • 451 Accesses

Abstract

Fixed-wing aerial robotic technology has advanced to the point where platforms fly persistent surveillance missions far from remote operators. Likewise, complex atmospheric phenomena can be simulated in near real time with increasing levels of fidelity. Furthermore, cloud computing technology enables distributed computation on large, dynamic datasets. Combining autonomous airborne sensors with environmental models dispersed over multiple communication and computation channels enables the collection of information essential for examining the fundamental behavior of atmospheric phenomena. This chapter describes progress toward the development of an autonomous airborne scientist using the dynamic data-driven application system (DDDAS) paradigm.

The chapter describes the five components of the energy-aware DDDAS (EA-DDDAS) system: (1) dual-Doppler synthesis, (2) atmospheric models for online planning (AMOP), (3) a wind field database, (4) a lattice planner, and (5) a trajectory optimization layer (TOL). EA-DDDAS combines unmanned aircraft systems, meshed networked communication, dynamic data-driven application system techniques, a cloud computing infrastructure, numerical weather models, and onboard sensors. The chapter describes the existing DDDAS system architecture along with results from recent field deployments validating and assessing various subsystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://recuv.colorado.edu/~elstonj/met_map/.

References

  1. NOAA, “GPRA Metrics National Yearly Trends,” 2014.

    Google Scholar 

  2. Simmons, K. M. and Sutter, D., “False Alarms, Tornado Warnings, and Tornado Casualties,” Weather, Climate, and Society, Vol. 1, No. 1, oct 2009, pp. 38–53.

    Google Scholar 

  3. MacDonald, A. E., “A global profiling system for improved weather and climate prediction,” Bulletin of the American Meteorological Society, Vol. 86, 2005, pp. 1747–1764.

    Article  Google Scholar 

  4. Weatherhead, E. and Argrow, B., CAUAS Civilian Applications of Unmanned Aircraft Systems: Priorities for the Coming Decade, Feb. 2008.

    Google Scholar 

  5. Burgess, D. W., “An Aircraft Penetration Through a Rear-Flank Downdraft: Revisiting an old case,” 24th Conf. on Severe Local Storms, American Meteorological Society, Savannah, GA, 2008.

    Google Scholar 

  6. “NOAA Unmanned Aerial Systems,” 2011.

    Google Scholar 

  7. Holland, G. J., Webster, P. J., Curry, J. A., Tyrell, G., Gauntlett, D., Brett, G., Becker, J., Hoag, R., and Vaglienti, W., “The Aerosonde Robotic Aircraft: A New Paradigm for Environmental Observations,” Bulletin of the American Meteorological Society, Vol. 82, No. 5, 2001, pp. 889–901.

    Article  Google Scholar 

  8. Curry, J. A., Maslanik, J., Holland, G., and Pinto, J., “Applications of Aerosondes in the Arctic,” Bulletin of the American Meteorological Society, Vol. 85, No. 12, 2004, pp. 1855–1861.

    Article  Google Scholar 

  9. Lin, P.-H. and Lee, C.-S., “The eyewall-penetration reconnaissance observation of typhoon Longwang (2005) with unmanned aerial vehicle, Aerosonde,” Journal of Atmospheric and Oceanic Technology, Vol. 25, No. 1, 2008, pp. 15–25.

    Article  Google Scholar 

  10. Blakeslee, R. J., Mach, D., Desch, M. D., Goldberg, R. A., Farrell, W. M., and Houser, J. G., “The Altus Cumulus Electrification Study (ACES): A UAV-based science demonstration,” 1st Technical Conf. and Workshop on Unmanned Aerospace Vehicles, Systems, Technologies, and Operations, Portsmouth, VA, 2002.

    Google Scholar 

  11. Reuder, J., Brisset, P., Jonassen, M., Müller, M., and Mayer, S., “The Small Unmanned Meteorological Observer SUMO: A new tool for atmospheric boundary layer research,” Meteorologische Zeitschrift, Vol. 18, 2009, pp. 141–147.

    Article  Google Scholar 

  12. van den Kroonenberg, A. C., Martin, S., Beyrich, F., and Bange, J., “Spatially-Averaged Temperature Structure Parameter Over a Heterogeneous Surface Measured by an Unmanned Aerial Vehicle,” Boundary-Layer Meteorology, Vol. 142, No. 1, 2012, pp. 55–77.

    Article  Google Scholar 

  13. Dias, N. L., Gonçalves, J. E., Freire, L. S., Hasegawa, T., and Malheiros, A. L., “Obtaining Potential Virtual Temperature Profiles, Entrainment Fluxes, and Spectra from Mini Unmanned Aerial Vehicle Data,” Boundary-Layer Meteorology, Vol. 145, No. 1, 2012, pp. 93–111.

    Article  Google Scholar 

  14. Bonin, T., Chilson, P., Zielke, B., and Fedorovich, E., “Observations of the Early Evening Boundary-Layer Transition Using a Small Unmanned Aerial System,” Boundary-Layer Meteorology, Vol. 146, No. 1, aug 2012, pp. 119–132.

    Google Scholar 

  15. Elston, J. S., Roadman, J., Stachura, M., Argrow, B., Houston, A., and Frew, E. W., “The Tempest Unmanned Aircraft System for In Situ Observations of Tornadic Supercells: Design and VORTEX2 Flight Results,” Journal of Field Robotics, Vol. 28, No. 4, July 2011, pp. 461–483.

    Article  Google Scholar 

  16. “VORTEX 2,” 2008.

    Google Scholar 

  17. Stachura, M., Elston, J., Argrow, B., Frew, E. W., and Dixon, C., National Airspace System Integration Strategy for Nomadic Missions with Small UAS, Springer-Verlag, 2015.

    Google Scholar 

  18. Stensrud, D. J., Ming, X., Wicker, L. J., Kelleher, K. E., Foster, M. P., Schaefer, J. T., Schneider, R. S., Benjamin, S. G., Weygandt, S. S., Ferree, J. T., and Tuell, J. P., “Convective-scale warn-on-forecast system: A vision for 2020,” Bulletin of the American Meteorological Society, Vol. 90, No. 10, 2009, pp. 1487–1499.

    Article  Google Scholar 

  19. Stensrud, D. J., Wicker, L. J., Xue, M., Dawson, D. T., Yussouf, N., Wheatley, D. M., Thompson, T. E., Snook, N. A., Smith, T. M., Schenkman, A. D., Potvin, C. K., Mansell, E. R., Lei, T., Kuhlman, K. M., Jung, Y., Jones, T. A., Gao, J., Coniglio, M. C., Brooks, H. E., and Brewster, K. A., “Progress and challenges with Warn-on-Forecast,” Atmospheric Research, Vol. 123, 2013, pp. 2–16.

    Article  Google Scholar 

  20. Evensen, G., “Sampling strategies and square root analysis schemes for the EnKF,” Ocean Dynamics, Vol. 54, No. 6, 2004, pp. 539–560.

    Article  Google Scholar 

  21. Sakov, P., Evensen, G., and Bertino, L., “Asynchronous data assimilation with the EnKF,” Tellus, Series A: Dynamic Meteorology and Oceanography, Vol. 62, No. 1, 2010, pp. 24–29.

    Article  Google Scholar 

  22. Plale, B., Gannon, D., Reed, D., Graves, S., Droegemeier, K., Wilhelmson, B., and Ramamurthy, M., “Towards dynamically adaptive weather analysis and forecasting in LEAD,” Lecture Notes in Computer Science, Vol. 3515, 2005, pp. 624–631.

    Article  Google Scholar 

  23. Gauthreaux, S. and Diehl, R., “Discrimination of biological scatterers in polarimetric weather radar data: Opportunities and challenges,” Remote Sensing, Vol. 12, No. 3, 2020.

    Google Scholar 

  24. Brandes, E. A., “Flow in Severe Thunderstorms Observed bu Dual-Doppler Radar,” Mon. Wea. Rev, Vol. 105, 1977, pp. 113–120.

    Article  Google Scholar 

  25. Barnes, S. L., “A technique for maximizing details in numerical weather map analysis,” J. Appl. Meteor., Vol. 3, 1964, pp. 396–409.

    Article  Google Scholar 

  26. Koch, S. E., DesJardins, M., and Kocin, P. J., “An interactive Barnes objective map analysis scheme for use with satellite and conventional data,” J. Clim. Appl. Meteor., Vol. 22, 1983, pp. 1487–1503.

    Article  Google Scholar 

  27. Majcen, M. P., Markowski, P., Richardson, Y., Dowell, D., and Wurman, J., “Multi-pass objective analyses of radar data,” J. Atmos. Oceanic Tech., Vol. 25, 2008, pp. 1845–1858.

    Article  Google Scholar 

  28. Frew, E. W., Argrow, B., Houston, A., Weiss, C., and Elston, J., “An Energy-Aware Airborne Dynamic Data-Driven Application System for Persistent Sampling and Surveillance,” Procedia Computer Science, Vol. 18, Jan. 2013, pp. 2008–2017.

    Article  Google Scholar 

  29. “MongoDB,” https://www.mongodb.com/, 2021.

  30. Otte, M., Silva, W., and Frew, E., “Any-Time Path-Planning: Time-Varying Wind Field + Moving Obstacles,” International Conference on Robotics and Automation, Stockholm, Sweden, May 2016.

    Google Scholar 

  31. Will Silva, E. W. F. and Shaw-Cortez, W., “Implementing Path Planning and Guidance Layers for Dynamic Soaring and Persistence Missions,” International Conference on Unmanned Aircraft Systems, Denver, CO, June 2015.

    Google Scholar 

  32. Silva, W., Frew, E. W., and Shaw-cortez, W., “Implementing Path Planning and Guidance Layers for Dynamic Soaring and Persistence Missions,” ICUAS, 2015.

    Google Scholar 

  33. Silva, W. and Frew, E. W., “Experimental Assessment of Online Dynamic Soaring Optimization for Small Unmanned Aircraft,” AIAA SciTech Forum, San Diego, CA, January 2016.

    Google Scholar 

  34. Gill, P. E., Murray, W., and Saunders, M. A., “SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization,” 2002.

    Google Scholar 

  35. Shaw-Cortez, W., Energy-Aware Path Planning with UAS for Persistent Sampling and Surveillance, Master’s thesis, University of Colorado, 2013.

    Google Scholar 

  36. Shaw-Cortez, W. and Frew, E. W., “Efficient Trajectory Development for Unmanned Aircraft System Dynamic Soaring,” AIAA Journal of Guidance, Control, and Dynamics, Vol. 38, No. 3, January 2015, pp. 519–523.

    Article  Google Scholar 

  37. Pisasale, A. and Ahmed, N., “A novel method for extending the calibration range of five-hole probe for highly three-dimensional flows,” Flow Measurement and Instrumentation, Vol. 13, No. 1–2, March 2002, pp. 23–30.

    Article  Google Scholar 

  38. Houston, A. L., Laurence, R. J., Nichols, T. W., Waugh, S., Argrow, B., and Ziegler, C. L., “Intercomparison of unmanned aircraftborne and mobile mesonet atmospheric sensors,” Journal of Atmospheric and Oceanic Technology, Vol. 33, No. 8, 2016, pp. 1569–1582.

    Article  Google Scholar 

  39. Elston, J., Nichols, T., Argrow, B., Frew, E., Lawrence, D., Cassano, J., Nigro, M., de Boer, G., Houston, A., Schueth, A., Weiss, C., Wildmann, N., and Chilson, P., “Multi-sUAS Evaluation of Techniques for Measurement of Atmospheric Properties,” International Society for Atmospheric Research using Remotely piloted Aircraft, Norman, OK, May 2015.

    Google Scholar 

  40. Brunkow, D., Bringi, V. N., Kennedy, P. C., Rutledge, S. A., Chandrasekar, V., Mueller, E. A., and Bowie, R. K., “A description of the CSU-CHILL National Radar Facility,” Journal of Atmospheric and Oceanic Technology, Vol. 17, No. 12, 2000, pp. 1596–1608.

    Article  Google Scholar 

  41. Junyent, F., Chandrasekar, V., Bringi, V. N., Rutledge, S. A., Kennedy, P. C., Brunkow, D., George, J., and Bowie, R., “Transformation of the CSU-chill radar facility to a dual-frequency, dual-polarization Doppler system,” Bulletin of the American Meteorological Society, Vol. 96, No. 6, 2015, pp. 975–996.

    Article  Google Scholar 

  42. Frew, E., Glasheen, K., Hirst, A., Bird, J., and Argrow, B., “A Dispersed Autonomy Architecture for Information-Gathering Drone Swarms,” IEEE Aerospace Conference, Big Sky, MT, March 2020.

    Google Scholar 

  43. Frew, E., Argrow, B., Borenstein, S., Swenson, S., Hirst, A., Havenga, H., and Houston, A., “Field Observation of Tornadic Supercells by Multiple Autonomous Fixed-Wing Drones,” Journal of Field Robotics, Vol. 37, No. 6, 2020, pp. 1077–1093.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric W. Frew .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frew, E.W., Argrow, B., Houston, A., Weiss, C. (2023). An Energy-Aware Airborne Dynamic Data-Driven Application System for Persistent Sampling and Surveillance. In: Darema, F., Blasch, E.P., Ravela, S., Aved, A.J. (eds) Handbook of Dynamic Data Driven Applications Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-27986-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27986-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27985-0

  • Online ISBN: 978-3-031-27986-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation