Abstract

This chapter on Mass Transfer starts with an introduction in Sect. 5.1, followed by Sect. 5.2 on molecular diffusion. Section 5.3 provides detailed coverage of interphase mass transfer coefficients. Section 5.4 covers gas absorption including liquid–gas ratios, and height of transfer units (HTU), number of transfer units (NTU). A comprehensive coverage of distillation including all aspects of the McCabe–Thiele method is provided in Sect. 5.5. Section 5.6 includes definition of terms used in psychrometric charts and illustrates the use of psychrometric charts in various applications while Sect. 5.7 covers cooling towers. Section 5.8 looks at drying operations with illustrations of detailed calculations related to drying. Section 5.9 covers the unit operation of liquid–liquid extraction. Both single-stage and multistage leaching operations are examined in Sect. 5.10. Section 5.11 covers the topic of adsorption of fluids using solid adsorbents. Crystallization and related calculations are examined in Sect. 5.12. Section 5.13 covers the topic of evaporation including single-effect and multiple-effect evaporators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 54.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Benitez, Principles and Modern Applications of Mass Transfer, 3rd edn. (Wiley, Hoboken, 2017)

    Google Scholar 

  2. A.S. Foust, L.A. Wenzel, C.W. Clump, L. Maus, B.L. Anderson, Principles of Unit Operations, 2nd edn. (Wiley, Hoboken, 2008)

    Google Scholar 

  3. W.L. McCabe, J.C. Smith, P. Harriott, Unit Operations of Chemical Engineering, 7th edn. (McGraw-Hill, New York, 2004)

    Google Scholar 

  4. N.S. Nandagopal, Fluid and Thermal Sciences – A Practical Approach for Students and Professionals (Springer Nature, Cham, 2022)

    Book  Google Scholar 

  5. R.E. Treybal, Mass Transfer Operations, 3rd edn. (McGraw-Hill, New York, 2012)

    Google Scholar 

  6. J. Welty, G.L. Rorrer, D.G. Foster, Fundamentals of Momentum, Heat, and Mass Transfer, 7th edn. (Wiley, Hoboken, 2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Practice Problems

5.1.1 Practice Problem 5.1

In an absorption tower, sulfur dioxide is being absorbed by water. At a particular location in the tower, the partial pressure of sulfur dioxide in the air stream was measured to be 45 mm Hg, and concentration of sulfur dioxide in water was determined to be 0.0385 lbmol SO2/ft3soln. The tower operating conditions are

1 atm and 70 °F. The individual mass transfer coefficients are:

$$ {\displaystyle \begin{array}{l}{k}_L=0.985\ \textrm{lbmol}\ {\textrm{SO}}_2/\textrm{hr}\hbox{-} {\textrm{ft}}^2\hbox{-} \left(\textrm{lbmol}\ {\textrm{SO}}_2/{\textrm{ft}}^3\textrm{soln}\right)\ \textrm{and}\\ {}{k}_G=0.195\ \textrm{lbmol}\ {\textrm{SO}}_2/\textrm{hr}\hbox{-} {\textrm{ft}}^2\hbox{-} \textrm{atm}\end{array}} $$

The equilibrium relationship is

$$ {P}_{Ai}=0.137{C}_{Ai},{P}_{Ai}\left(\textrm{atm}\right),{C}_{Ai}\left(\textrm{lbmol}\ {\textrm{SO}}_2/{\textrm{ft}}^3\textrm{soln}\right). $$

Determine:

  1. A.

    the percentage of the total resistance in the liquid film and comment on the result obtained.

  2. B.

    \( {P}_{AG}-{P}_A^{\ast } \)

  3. C.

    \( {C}_A^{\ast }-{C}_{AL} \)

  4. D.

    PAG − PAi, and CAi − CAL

5.1.2 Practice Problem 5.2

Carbon dioxide is absorbed from an air stream using a pure amine solution (molecular weight 32 kg/kmol) as a solvent. The amine solution is fed from the top of the tower (diameter 0.85 m) at a mass flow rate of 0.8 kg/s. The gas mixture containing 6 mole% carbon dioxide enters from the bottom of the tower at a molar flow rate of 0.0045 kmol/s. The desired mole fraction of carbon dioxide in the exit air stream is 1.25%. The equilibrium relationship is YA1 = 5.95XA1 where YA1 is the mole ratio of carbon dioxide to air in the gas stream and XA1 is the mole ratio of carbon dioxide to amine in the liquid stream. Determine:

  1. A.

    the mole fraction of carbon dioxide in the amine solution leaving the tower

  2. B.

    the ratio \( {\left(\frac{L_S}{G_S}\right)}_{\textrm{actual}}\textrm{to}\ {\left(\frac{L_S}{G_S}\right)}_{\textrm{min}} \)

5.1.3 Practice Problem 5.3

Given the McCabe–Thiele diagram for a binary distillation system, label all the lines/curves in the diagram with standard nomenclature and determine:

  1. A.

    the minimum reflux ratio.

  2. B.

    the ratio between the actual reflux ratio and the minimum reflux ratio.

  3. C.

    the value of q and the feed condition.

  4. D.

    the liquid to vapor ratio, that is, L/V, in the rectifying section.

  5. E.

    the boil-up ratio, that is, V/B referring to the reboiler.

A graph of y versus x. It has a diagonal line plotted with a curve. A line is plotted through (0.09. 0.04), (0.3, 0.5), and (0.93, 0.9). Another line is plotted through (0, 0.48) and (0.93, 0.9). The intersection line is plotted through (0.22, 0.58), (0.3, 0.5), and (0.42, 0.38). Data are estimated.

5.1.4 Practice Problem 5.4

A wet solid with a mass of 5 kg and 10% moisture content is dried in a batch drier to final moisture content of 0.05 kg water/kg dry solid, a process which takes 4.8 hrs. The surface area of the wet solid is 1.8 m2 and the equilibrium moisture content is 0.02 kg water/kg dry solid. Assuming a constant rate of drying, determine the drying rate in kg/m2.min.

5.1.5 Practice Problem 5.5

The rate of water removal during the constant drying period of 0.73 hr of a wet solid is 8 lbm H2O/min-ft2. During this period, the moisture content is reduced from an initial value of 0.35 lbm H2O/lbm dry solid to critical value of 0.14 lbm H2O/lbm dry solid. The surface area of the wet solid is 2.25 ft2. The equilibrium moisture content is 0.04 lbm H2O/lbm dry solid. Determine:

  1. A.

    the mass of the dry solid.

  2. B.

    the total drying time required to achieve a final moisture content of 0.07 lbm H2O/lbm dry solid.

5.1.6 Practice Problem 5.6

A dryer uses hot air to dry wet feed with 20% moisture content on a wet basis to a final moisture content of 10%, also on a wet basis. To accomplish this, 4225 cfm (cubic feet per minute) of air at 50 °F and 50% relative humidity is preheated to 120 °F before being fed to the dryer. The air leaves the dryer at 85 °F. Determine the mass flow rate (lbm/min) of wet solid that can be processed by the dryer.

5.1.7 Practice Problem 5.7

It is desired to extract ethylene glycol (E) from 250 lbm of a feed solution containing 60% (by mass) of ethylene glycol and 40% water (W). The solvent used is 150 lbm of pure furfural (F). The relevant equilibrium ternary phase diagram is given below.

A ternary phase diagram. It has a triangle with the vertices W, F, and E. 9 horizontal and right and left slanting lines are drawn inside the triangle, and the lines range from 10 to 90. A curve is drawn inside the triangle, and the decreasing lines are drawn inside the curve.

Determine:

  1. A.

    the composition of the mixture.

  2. B.

    the mass and composition of the extract and the raffinate.

  3. C.

    the fraction of the solute recovered (also known as recovery)

5.1.8 Practice Problem 5.8

Oil is extracted from a solid substrate fed to a multistage leaching system at the rate of 700 kg/hr. The solids contain 28% oil, and the rest are insoluble solids. Pure organic solvent is fed in a direction counter to the flow of the solids. The requirements specified for the leaching system are as follows:

  • The solids leaving the system should contain no more than 40 kg/hr of unextracted oil.

  • The underflow from each stage has 2 kg inerts/kg solution.

  • The mass fraction of the solute in the product overflow solution should be no less than 0.20.

Determine:

  1. A.

    The mass flow rate and composition of the underflow solution.

  2. B.

    The mass flow rate of the overflow solution.

  3. C.

    The mass flow rate of the pure solvent required.

  4. D.

    The number of stages required assuming a straight line equilibrium relationship, y = x.

5.1.9 Practice Problem 5.9

Methane is adsorbed by activated carbon from a hydrocarbon gas mixture at atmospheric pressure and 20 °C containing 2 mole% methane. The following equilibrium data is available, where,

PCH4 (kPa)

20

40

60

80

100

mS/mA(g/g)

0.13

0.24

0.35

0.42

0.50

$$ {\displaystyle \begin{array}{l}{P}_{{\textrm{CH}}_4}=\textrm{partial}\ \textrm{pr}.\textrm{of}\ {\textrm{CH}}_4,\textrm{kPa},\textrm{and}\\ {}\left({m}_S/{m}_A\right)=\textrm{g}\ {\textrm{CH}}_4\ \textrm{adsorbed}/\textrm{g}\ \textrm{AC}\end{array}} $$

Determine the Freundlich relationship and the volume (L) of methane adsorbed by 100 g of adsorbent.

Solutions to Practice Problems

5.1.1 Practice Problem 5.1

5.1.1.1 Solution

Determine m from the given equilibrium relationship, PAi = 0.137CAi, ⇒

$$ m=0.137\ \textrm{atm}/\left(\textrm{lbmol}\ {\textrm{SO}}_2/{\textrm{ft}}^3\textrm{soln}\right) $$
  1. A.

    Determine the overall liquid mass transfer resistance using Eq. 5.5 and the known values.

$$ {\displaystyle \begin{array}{l}\frac{1}{K_L}=\frac{1}{k_L}+\frac{1}{mk_G}=\frac{1}{0.985\frac{\textrm{lbmol}}{\textrm{hr}-{\textrm{ft}}^2\left(\textrm{lbmol}\ {\textrm{SO}}_2/{\textrm{ft}}^3\textrm{soln}\right)}}\\ {}\kern2.75em +\frac{1}{\left(0.137\frac{\textrm{atm}\ }{\textrm{lbmol}\ {\textrm{SO}}_2/{\textrm{ft}}^3\textrm{soln}}\right)\left(0.195\frac{\textrm{lbmol}}{\textrm{hr}-{\textrm{ft}}^2\left(\textrm{atm}\right)}\right)}\\ {}\kern7em =38.447\ \left(\textrm{lbmol}\ {\textrm{SO}}_2/{\textrm{ft}}^3\textrm{soln}\right)/\left(\textrm{lbmol}/\textrm{hr}\hbox{-} {\textrm{ft}}^2\right)\Rightarrow \\ {}{K}_L=0.0260\ \textrm{lbmol}/\textrm{hr}\hbox{-} {\textrm{ft}}^2/\left(\textrm{lbmol}\ {\textrm{SO}}_2/{\textrm{ft}}^3\textrm{soln}\right)\end{array}} $$

Determine the resistance in the liquid film.

$$ {\displaystyle \begin{array}{l}\frac{1}{k_L}=\frac{1}{0.985\frac{\textrm{lbmol}}{\textrm{hr}-{\textrm{ft}}^2\left(\textrm{lbmol}\ {\textrm{SO}}_2/{\textrm{ft}}^3\textrm{soln}\right)}}\\ {}=1.015\ \left(\textrm{lbmol}\ {\textrm{SO}}_2/{\textrm{ft}}^3\textrm{soln}\right)/\left(\textrm{lbmol}/\textrm{hr}\hbox{-} {\textrm{ft}}^2\right)\end{array}} $$

Calculate the percentage of the total (overall) resistance in the liquid film.

$$ {\displaystyle \begin{array}{l}\%\textrm{resist}.\textrm{in}\ \textrm{liq}\ \textrm{film}=\frac{\frac{1}{k_L}}{\frac{1}{K_L}}\times 100\\ {}=\left(\frac{1.015\frac{\textrm{lbmol}\ {\textrm{SO}}_2/{\textrm{ft}}^3\textrm{soln}}{\textrm{lbmol}/\textrm{hr}\hbox{-} {\textrm{ft}}^2}}{38.447\frac{\textrm{lbmol}\ {\textrm{SO}}_2/{\textrm{ft}}^3\textrm{soln}}{\textrm{lbmol}/\textrm{hr}\hbox{-} {\textrm{ft}}^2}}\right)(100)\\ {}=2.64\%\end{array}} $$

Note: The result obtained indicates that approximately 97% of the total resistance to mass transfer is in the gas film, implying a gas-phase controlled mass-transfer process.

  1. B.

    Calculate \( {P}_A^{\ast } \) using Eq. 5.8.

$$ {\displaystyle \begin{array}{l}{P}_A^{\ast }={mC}_{AL}\\ {}=\left(0.137\frac{\textrm{atm}}{\frac{\textrm{lbmol}\ {\textrm{SO}}_2}{{\textrm{ft}}^3\textrm{soln}}}\right)\left(0.0385\frac{\textrm{lbmol}\ {\textrm{SO}}_2}{{\textrm{ft}}^3\textrm{soln}}\right)\\ {}=0.0053\ \textrm{atm}\end{array}} $$

Determine \( {P}_{AG}-{P}_A^{\ast } \).

$$ {\displaystyle \begin{array}{l}{P}_{AG}-{P}_A^{\ast }=\left(45\ \textrm{mm}\ \textrm{Hg}\times \frac{1\ \textrm{atm}}{760\ \textrm{mm}\ \textrm{Hg}}\right)-0.0053\ \textrm{atm}\\ {}=0.0539\ \textrm{atm}\end{array}} $$
  1. C.

    Determine \( {C}_A^{\ast } \) using Eq. 5.9.

$$ {C}_A^{\ast }=\frac{P_{AG}}{m}=\frac{45\ \textrm{mm}\ \textrm{Hg}\times \frac{1\ \textrm{atm}}{760\ \textrm{mm}\ \textrm{Hg}}}{0.137\frac{\textrm{atm}}{\frac{\textrm{lbmol}\ {\textrm{SO}}_2}{{\textrm{ft}}^3\textrm{soln}}}}=0.4322\ \textrm{lbmol}\ {\textrm{SO}}_2/{\textrm{ft}}^3\textrm{soln} $$

Calculate \( {C}_A^{\ast }-{C}_{AL} \).

$$ {\displaystyle \begin{array}{l}{C}_A^{\ast }-{C}_{AL}=0.4322\frac{\textrm{lbmol}\ {\textrm{SO}}_2}{{\textrm{ft}}^3\textrm{soln}}-0.0385\frac{\textrm{lbmol}\ {\textrm{SO}}_2}{{\textrm{ft}}^3\textrm{soln}}\\ {}=0.3937\ \textrm{lbmol}\ {\textrm{SO}}_2/{\textrm{ft}}^3\textrm{soln}\end{array}} $$

Alternately, \( {C}_A^{\ast }-{C}_{AL} \) can be calculated using Eq. 5.7, that is, \( {N}_A={K}_G\left({P}_{AG}-{P}_A^{\ast}\right)={K}_L\left({C}_A^{\ast }-{C}_{AL}\right) \). However, this approach requires the calculation of KG first using Eq. 5.4, that is, \( \frac{1}{K_G}=\frac{1}{k_G}+\frac{m}{k_L} \). Obviously, this would be a more laborious process.

  1. D.

    To calculate PAG − PAi, and CAi − CAL, first calculate the molar flux using Eq. 5.7 and the result for \( {C}_A^{\ast }-{C}_{AL} \) obtained in the solution to part “C.”

$$ {\displaystyle \begin{array}{l}{N}_A={K}_L\left({C}_A^{\ast }-{C}_{AL}\right)\\ {}=\left(0.0260\frac{\frac{\textrm{lbmol}}{\textrm{hr}\hbox{-} {\textrm{ft}}^2}}{\frac{\textrm{lbmol}\ {\textrm{SO}}_2}{{\textrm{ft}}^3\textrm{soln}}}\right)\left(0.3937\frac{\textrm{lbmol}\ {\textrm{SO}}_2}{{\textrm{ft}}^3\textrm{soln}}\right)\\ {}=0.0102\ \textrm{lbmol}/\textrm{hr}\hbox{-} {\textrm{ft}}^2\end{array}} $$

Determine PAG − PAi, and CAi − CAL using Eq. 5.3.

$$ {\displaystyle \begin{array}{l}{N}_A={k}_G\left({P}_{AG}-{P}_{Ai}\right)={k}_L\left({C}_{Ai}-{C}_{AL}\right)\Rightarrow \\ {}{P}_{AG}-{P}_{Ai}=\frac{N_A}{k_G}=\frac{0.0102\frac{\textrm{lbmol}}{\textrm{hr}-{\textrm{ft}}^2}}{0.195\frac{\frac{\textrm{lbmol}}{\textrm{hr}-{\textrm{ft}}^2}}{\textrm{atm}}}=0.0523\ \textrm{atm}\\ {}{C}_{Ai}-{C}_{AL}=\frac{N_A}{k_L}=\frac{0.0102\frac{\textrm{lbmol}}{\textrm{hr}-{\textrm{ft}}^2}}{0.985\frac{\frac{\textrm{lbmol}}{\textrm{hr}-{\textrm{ft}}^2}}{\frac{\textrm{lbmol}\ {\textrm{SO}}_2}{{\textrm{ft}}^3\textrm{soln}}}}=0.0104\ \textrm{lbmol}\ {\textrm{SO}}_2/{\textrm{ft}}^3\textrm{soln}\end{array}} $$

5.1.2 Practice Problem 5.2

5.1.2.1 Solution

Draw the schematic diagram for the process with nomenclature consistent with that used in Fig. 5.3.

A schematic of the tower. It has a rectangular-shaped tower, where the bottom corner is labeled 1 and the top corner is labeled 2. The pure amine enters the tower via 2 and exits as amine with absorbed S O 2 in 1. The rich air with S O 2 enters the tower via 1 and exits as lean air in 2.
  1. A.

    Calculate the cross-section area of the tower.

$$ {A}_{CS}=\left(\frac{\pi }{4}\right){\left(0.85\ \textrm{m}\right)}^2=0.5674\ {\textrm{m}}^2 $$

Calculate the molar flux of the gas entering the tower on a solute-free basis.

$$ {\displaystyle \begin{array}{l}{G}_S={G}_1\left(1-{y}_{a1}\right)=\left(\frac{0.0045\frac{\textrm{kmol}\ \textrm{mix}}{\textrm{s}}}{0.5674\ {\textrm{m}}^2}\right)\left(\left(1-0.06\right)\frac{\textrm{kmol}\ \textrm{air}}{\textrm{kmol}\ \textrm{mix}}\right)\\ {}=0.0074\ \textrm{kmol}\ \textrm{air}/\textrm{s}\hbox{-} {\textrm{m}}^2\end{array}} $$

Calculate the molar flux of amine solvent entering the absorption tower using its molecular weight and cross section area of the tower. Since pure solvent is entering the tower, LS = L1 and XA2 = 0.

$$ {\displaystyle \begin{array}{l}{L}_S={L}_1=\frac{{\dot{m}}_{a\min e}}{M_{a\min e}\times {A}_{cs}}=\frac{0.8\frac{\textrm{kg}}{\textrm{s}}}{\left(32\frac{\textrm{kg}}{\textrm{kmol}}\right)\left(0.5674\ {\textrm{m}}^2\right)}\\ {}=0.0441\ \textrm{kmol}/\textrm{s}\hbox{-} {\textrm{m}}^2\end{array}} $$

Calculate YA1 and YA2 using Eq. 5.11.

$$ {\displaystyle \begin{array}{l}{Y}_{A1}=\frac{y_{A1}}{1-{y}_{A1}}=\frac{0.06}{1-0.06}=0.064\\ {}{Y}_{A2}=\frac{y_{A2}}{1-{y}_{A2}}=\frac{0.0125}{1-0.0125}=0.0127\end{array}} $$

Calculate the mole fraction of carbon dioxide in the amine leaving the tower using Eq. 5.10 after first calculating the mole ratio, moles of carbon dioxide to moles of amine in the liquid using the material balance equation (Eq. 5.16).

$$ {X}_{A1}=\frac{x_A}{1-{x}_A}\Rightarrow 0.0086=\frac{x_{A1}}{1-{x}_{A1}}\Rightarrow {x}_{A1}=0.0085 $$

B. Determine the exit mole ratio of ammonia solute to water in equilibrium \( \left({X}_{A1}^{\ast}\right) \) with the entrance mole ratio of ammonia to air (YA1) using the given equilibrium relationship.

$$ {\displaystyle \begin{array}{l}{Y}_{A1}=5.95{X}_{A1}^{\ast}\Rightarrow \\ {}{X}_{A1}^{\ast }=\frac{Y_{A1}}{5.95}=\frac{0.064}{5.95}=0.0108\end{array}} $$

Calculate (LS/GS)min using Eq. 5.18.

$$ {\left(\frac{L_S}{G_S}\right)}_{\textrm{min}}=\frac{\left({Y}_{A1}-{Y}_{A2}\right)}{\left({X}_{A1}^{\ast }-{X}_{A2}\right)}=\frac{0.064-0.0127}{0.0108-0}=4.75 $$

Calculate (LS/GS)actual by substituting the known values.

$$ {\left(\frac{L_S}{G_S}\right)}_{\textrm{actual}}=\frac{0.0441\frac{\textrm{kmol}\ \textrm{amine}}{\textrm{s}\hbox{-} {\textrm{m}}^2}}{0.0074\frac{\textrm{kmol}\ \textrm{air}}{\textrm{s}\hbox{-} {\textrm{m}}^2}}=5.96 $$

Calculate the ratio \( {\left(\frac{L_S}{G_S}\right)}_{\textrm{actual}}/\kern0.5em {\left(\frac{L_S}{G_S}\right)}_{\textrm{min}}. \)

$$ \textrm{Required}\ \textrm{Ratio}=\frac{{\left(\frac{L_S}{G_S}\right)}_{\textrm{actual}}}{{\left(\frac{L_S}{G_S}\right)}_{\textrm{min}}}=\frac{5.96}{4.75}=1.25 $$

5.1.3 Practice Problem 5.3

5.1.3.1 Solution

All the relevant lines/curves have been labeled as shown in the figure.

A graph of y versus x. It has a diagonal line plotted with a curve. A line is plotted through (0.06. 0.03), (0.3, 0.5), and (0.93, 0.9). Another line is plotted from (0, 0.48) to (0.93, 0.9). The intersection line is plotted through (0.22, 0.575), (0.3, 0.5), and (0.42, 0.38). Data are estimated.
  1. A.

    From the diagram, the compositions of feed, distillate, and the bottom product are 0.42, 0.93, and 0.06, respectively, that is,

$$ {x}_F=0.42,{x}_D=0.93,\textrm{and}\kern0.5em {x}_B=0.06, $$

The y-intercept of the Rmin-line is 0.47. Therefore, from Eq. 5.34,

$$ \frac{x_D}{R_{\textrm{min}}+1}=0.47\Rightarrow \frac{0.93}{R_{\textrm{min}}+1}=0.47\Rightarrow {R}_{\textrm{min}}=0.98 $$
  1. B.

    Extend the rectification line to the y-axis as shown in the figure. This line is the Ractual-line. From the diagram, the y-intercept of the Ractual-line is 0.32.

Therefore, from Eq. 5.34,

$$ \frac{x_D}{R_{\textrm{actual}}+1}=0.32\Rightarrow \frac{0.93}{R_{\textrm{actual}}+1}=0.32\Rightarrow {R}_{\textrm{actual}}=1.91 $$

Therefore, the required ratio of actual reflux to minimum reflux is

$$ \textrm{Ratio}=\frac{R_{\textrm{actual}}}{R_{\textrm{min}}}=\frac{1.91}{0.98}=1.95 $$
  1. C.

    From the figure, determine the slope of the q-line.

$$ {\textrm{Slope}}_{q-\textrm{line}}=\frac{\Delta y}{\Delta x}=\frac{28\ \textrm{units}}{-35\ \textrm{units}}=-0.80 $$

From Eq. 5.43,

$$ \textrm{slope}\ \textrm{of}\ q\hbox{-} \textrm{line}=\frac{q}{q-1}=-0.80\Rightarrow q=0.44 $$

From Fig. 5.7, since 0 < q < 1, the feed condition is liquid–vapor mixture.

  1. D.

    From material balance for the column, Eq. 5.33 is

$$ {y}_{n+1}=\left(\frac{L_n}{L_n+D}\right){x}_n+\left(\frac{D}{L_n+D}\right){x}_D\kern0.36em \textrm{and}\kern0.36em {L}_n+D={V}_{n+1} $$

Equation 5.34 for the operating line for the rectification section is

$$ {y}_{n+1}=\left(\frac{R}{R+1}\right){x}_n+\frac{x_D}{R+1} $$
(5.34)

Assuming constant molal overflow, the suffixes can be dropped, the preceding equations can be combined to obtain the following result.

$$ {\displaystyle \begin{array}{l}y=\left(\frac{L}{V}\right)x+\left(\frac{D}{L_n+D}\right){x}_D=\left(\frac{R}{R+1}\right)x+\frac{x_D}{R+1}\Rightarrow \\ {}\frac{L}{V}=\frac{R_{\textrm{actual}}}{R_{\textrm{actual}}+1}=\frac{1.91}{1.91+1}=0.66\end{array}} $$

E. The slope of the operating line for the strip** section can be obtained from the diagram and then the material balance relationships (Eqs. 5.36, 5.37, and 5.38) for the strip** section can be used to obtain the following results and eventually the ratio, V′/B.

$$ {\displaystyle \begin{array}{l}\textrm{Slope}=\frac{\Delta y}{\Delta x}=\frac{16\ \textrm{units}}{9\ \textrm{units}}=1.78=\frac{L^{\prime }}{L^{\prime }-B}=\frac{V^{\prime }+B}{V^{\prime }}=\frac{\frac{V^{\prime }}{B}+1}{\frac{V^{\prime }}{B}}\Rightarrow \\ {}\frac{V^{\prime }}{B}+1=(1.78)\left(\frac{V^{\prime }}{B}\right)\Rightarrow 0.78\left(\frac{V^{\prime }}{B}\right)=1\Rightarrow \\ {}\frac{V^{\prime }}{B}=1.28\end{array}} $$

5.1.4 Practice Problem 5.4

5.1.4.1 Solution

First, calculate the mass of completely dry solid, designated as “dry solid.”

$$ {\displaystyle \begin{array}{l}{m}_S=\left(5\ \textrm{kg}\ \textrm{wet}\ \textrm{solid}\right)\left(0.90\frac{\textrm{kg}\ \textrm{dry}\ \textrm{solid}}{\textrm{kg}\ \textrm{wet}\ \textrm{solid}}\right)\\ {}=4.5\ \textrm{kg}\ \textrm{dry}\ \textrm{solid}\end{array}} $$

Express the initial moisture content in terms of kg H2O/kg dry solid. Therefore,

$$ {\displaystyle \begin{array}{l}{X}_i=\left(\frac{5\ \textrm{kg}\ \textrm{wet}\ \textrm{solid}}{4.5\ \textrm{kg}\ \textrm{dry}\ \textrm{solid}}\right)\left(\frac{0.10\ \textrm{kg}\ {\textrm{H}}_2\textrm{O}}{\textrm{kg}\ \textrm{wet}\ \textrm{solid}}\right)\\ {}=0.1111\ \textrm{kg}\ {\textrm{H}}_2\textrm{O}/\textrm{kg}\ \textrm{dry}\ \textrm{solid}\end{array}} $$

Calculate the constant drying rate using Eq. 5.50a. Substitute Xf in place of Xc

$$ {\displaystyle \begin{array}{l}{R}_c=\frac{m_s\left({X}_i-{X}_f\right)}{At_c}\\ {}=\frac{\left(4.5\ \textrm{kg}\ \textrm{dry}\ \textrm{solid}\right)\left(0.1111\frac{\textrm{kg}\ {\textrm{H}}_2\textrm{O}}{\textrm{kg}\ \textrm{dry}\ \textrm{solid}}-0.05\frac{\textrm{kg}\ {\textrm{H}}_2\textrm{O}}{\textrm{kg}\ \textrm{dry}\ \textrm{solid}}\right)}{\left(1.8\ {\textrm{m}}^2\right)\left(4.8\ \textrm{hrs}\right)}\\ {}=0.0318\ \textrm{kg}\ {\textrm{H}}_2\textrm{O}/{\textrm{m}}^2\cdot \textrm{hr}\end{array}} $$

5.1.5 Practice Problem 5.5

5.1.5.1 Solution

  1. A.

    Using the given information and Eq. 5.50a for constant drying rate, determine the mass of the dry solid as shown.

$$ {\displaystyle \begin{array}{l}{R}_c=\frac{m_s\left({X}_i-{X}_c\right)}{At_c}\Rightarrow \\ {}{m}_s=\frac{R_c{At}_c}{\left({X}_i-{X}_c\right)}\\ {}=\frac{\left(8.5\ \frac{\textrm{lbm}\ {\textrm{H}}_2\textrm{O}}{\min \hbox{-} {\textrm{ft}}^2}\right)\left(2.25\ {\textrm{ft}}^2\right)\left(0.73\ \textrm{hrs}\times \frac{60\ \min }{\textrm{hr}}\right)}{\left(0.35\frac{\textrm{lbm}\ {\textrm{H}}_2\textrm{O}}{\textrm{lbm}\ \textrm{dry}\ \textrm{solid}}-0.14\frac{\textrm{lbm}\ {\textrm{H}}_2\textrm{O}}{\textrm{lbm}\ \textrm{dry}\ \textrm{solid}}\right)}\\ {}=3989\ \textrm{lbm}\ \textrm{dry}\ \textrm{solid}\end{array}} $$
  1. B.

    Calculate the total drying time required using Eq. 5.54.

$$ {\displaystyle \begin{array}{l}{t}_{\textrm{total}}=\kern-0.9em \left(\frac{m_s}{AR_c}\right)\left[\left({X}_i-{X}_c\right)+\left({X}_c-{X}_e\right)\ln \left(\frac{X_c-{X}_e}{X_f-{X}_e}\right)\right]\Rightarrow \\ {}=\kern-0.9em \left(\frac{3989\ \textrm{lbm}\ \textrm{dry}\ \textrm{solid}}{\left(2.25\ {\textrm{ft}}^2\right)\left(8.5\ \frac{\textrm{lbm}\ {\textrm{H}}_2\textrm{O}}{\min \hbox{-} {\textrm{ft}}^2}\right)}\right)\left[\begin{array}{l}\left(0.35-0.14\right)+\left(0.14-0.04\right)\times \\ {}\kern4.75em \ln \left(\frac{0.14-0.04}{0.07-0.04}\right)\end{array}\right]\\ {}=\kern-0.8em 68.91\ \min \left(1.1485\ \textrm{hrs}\right)\end{array}} $$
  • Note: The units for moisture content are lbm H2O/lbm dry solid, and they are not shown for the sake of the brevity of the presentation of the equation.

5.1.6 Practice Problem 5.6

5.1.6.1 Solution

A schematic diagram for the process is drawn as shown.

A block diagram of the dryer process unit. It consists of a pre-heater and an adiabatic dryer connected in series. The air enters the pre-heater, followed by the dryer. The wet solid enters the dryer and exits as a partially dry solid.

The entering solid has 20% moisture content on a wet basis. Using this information and assuming \( {\dot{m}}_{\textrm{ws}} \) as the mass flow rate of the wet solid fed to the dryer, express the mass flow rate of bone-dry solid in terms of the mass flow rate of the wet solid fed to the dryer.

$$ {\displaystyle \begin{array}{l}{\dot{m}}_{\textrm{bds}}=\left(\frac{{\dot{m}}_{\textrm{ws}}\textrm{lbm}\ \textrm{wet}\ \textrm{solid}\ }{\textrm{hr}}\right)\left(\frac{0.8\ \textrm{lbm}\ \textrm{bone}\ \textrm{dry}\ \textrm{solid}}{\textrm{lbm}\ \textrm{wet}\ \textrm{solid}}\right)\\ {}=\left(0.8{\dot{m}}_{\textrm{ws}}\right)\ \textrm{lbm}\ \textrm{bone}\ \textrm{dry}\ \textrm{solid}/\textrm{hr}\end{array}} $$

The partially dried solid coming out of the dryer has a moisture content of 10%. Based on this information, express the mass flow rate of the partially dry solid in terms of the mass flow rate of the wet solid fed to the dryer.

$$ {\displaystyle \begin{array}{l}{\dot{m}}_{\textrm{pds}}=\left(\frac{\left(0.8{\dot{m}}_{\textrm{ws}}\right)\textrm{lbm}\ \textrm{bone}\ \textrm{dry}\ \textrm{solid}\ }{\textrm{hr}}\right)\left(\frac{1\ \textrm{lbm}\ \textrm{partially}\ \textrm{dry}\ \textrm{solid}}{0.90\ \textrm{lbm}\ \textrm{bone}\ \textrm{dry}\ \textrm{solid}}\right)\\ {}=\left(0.89{\dot{m}}_{\textrm{ws}}\right)\ \textrm{lbm}\ \textrm{partially}\ \textrm{dry}\ \textrm{solid}/\textrm{hr}\end{array}} $$
A psychometric chart presents the transition from state 1 to state 4. Several curves follow an increasing trend between 0 and 0.014. Values are h 1 = 16.5, v = 12.9, omega 1 to 3 = 0.004, and omega 4 = 0.012. States 2, 3 and 4 are connected via an adiabatic saturation line.

Obtain the properties of moist air by locating the state points of air on the psychrometric chart.

State point 1 (50 °F, 50% rh):

$$ {\omega}_1=0.004\ \textrm{lbm}\ {\textrm{H}}_2\textrm{O}/\textrm{lbm}\ \textrm{d}\textrm{ry}\ \textrm{a}\textrm{ir},{v}_1=12.9\ {\textrm{ft}}^3/\textrm{lbm}\ \textrm{d}\ \textrm{a} $$

State points 2 and 3 (120 °F, ω1 = ω2 = ω3, sensible heating at const. moist.):

$$ {\omega}_1={\omega}_2={\omega}_3=0.004\ \textrm{lbm}\ {\textrm{H}}_2\textrm{O}/\textrm{lbm}\ \textrm{dry}\ \textrm{air} $$

To locate state point 4, move along the constant wet bulb temperature line (because of adiabatic saturation of air) from state point 3 to the given final dry bulb temperature of 85 °F. At state point 4,

$$ {\omega}_4=0.012\ \textrm{lbm}\ {\textrm{H}}_2\textrm{O}/\textrm{lbm}\ \textrm{dry}\ \textrm{air}. $$

Using the specific volume of the air entering the pre-heater, calculate the mass flow rate of dry air, \( {\dot{m}}_a \), which remains constant throughout the processes in the pre-heater and dryer.

$$ {\dot{m}}_a=\frac{{\dot{V}}_1}{v_1}=\frac{4225\frac{{\textrm{ft}}^3}{\min }}{12.9\frac{{\textrm{ft}}^3}{\textrm{lbm}\ \textrm{d}\ \textrm{a}}}=327.52\ \textrm{lbm}\ \textrm{d}\ \textrm{a}/\min $$

The increase in moisture content of air due to the drying process is \( {\dot{m}}_a\left({\omega}_4-{\omega}_3\right) \), where ω3 and ω4 are moisture contents in air before and after the drying process. Calculate the mass of water evaporated and absorbed by air by mass balance for water in the solids and hence calculate the mass flow rate of the wet solid fed to the dryer, \( {\dot{m}}_{\textrm{ws}} \), by substituting all remaining known values.

$$ {\displaystyle \begin{array}{l}\textrm{mass}\ \textrm{of}\ \textrm{water}\ \textrm{vapor}\ \textrm{absorbed}\ \textrm{by}\ \textrm{air}\\ {}\kern7em =\textrm{mass}\ \textrm{of}\ \textrm{water}\ \textrm{evaporated}\ \textrm{from}\ \textrm{wet}\ \textrm{solid}\\ {}\kern7em =\textrm{mass}\ \textrm{of}\ \textrm{wet}\ \textrm{solid}\ \textrm{in}\hbox{--} \textrm{mass}\ \textrm{of}\ \textrm{partially}\ \textrm{dry}\ \textrm{solid}\ \textrm{out}\end{array}} $$
$$ {\displaystyle \begin{array}{l}{\dot{m}}_a\left({\omega}_4-{\omega}_3\right)={\dot{m}}_{\textrm{ws}}-{\dot{m}}_{\textrm{pds}}={\dot{m}}_{\textrm{ws}}-0.89{\dot{m}}_{\textrm{ws}}=0.11{\dot{m}}_{\textrm{ws}}\\ {}\Rightarrow {\dot{m}}_{\textrm{ws}}=\frac{{\dot{m}}_a\left({\omega}_4-{\omega}_3\right)}{0.11\frac{\textrm{lbm}\ {\textrm{H}}_2\textrm{O}\ \textrm{removed}}{\textrm{lbm}\ \textrm{wet}\ \textrm{solid}}}\\ {}=\frac{\left(327.52\frac{\textrm{lbm}\ \textrm{d}\ \textrm{a}}{\min}\right)\left(0.012\frac{\textrm{lbm}\ {\textrm{H}}_2\textrm{O}}{\textrm{lbm}\ \textrm{d}\ \textrm{a}}-0.004\frac{\textrm{lbm}\ {\textrm{H}}_2\textrm{O}}{\textrm{lbm}\ \textrm{d}\ \textrm{a}}\right)}{0.11\frac{\textrm{lbm}\ {\textrm{H}}_2\textrm{O}\ \textrm{removed}}{\textrm{lbm}\ \textrm{wet}\ \textrm{solid}}}\\ {}=23.82\ \textrm{lbm}\ \textrm{wet}\ \textrm{solid}/\min \end{array}} $$

5.1.7 Practice Problem 5.7

5.1.7.1 Solution

  1. A.

    Determine the composition of the mixture by using overall and component mass balances. FD represents the feed solution, F represents the furfural solvent, and M represents the mixture. Subscript F represents furfural, subscript W represents water, and subscript EG represents ethylene glycol.

Overall mass balance:

$$ {\displaystyle \begin{array}{l}\textrm{M}=\textrm{FD}+\textrm{F}=250\ \textrm{lbm}+150\ \textrm{lbm}=400\ \textrm{lbm}\\ {}\Rightarrow {x}_{\textrm{F},\textrm{M}}=\frac{\textrm{F}}{\textrm{M}}=\frac{150\ \textrm{lbm}}{400\ \textrm{lbm}}=0.375\end{array}} $$

Mass balance for water:

$$ {\displaystyle \begin{array}{l}\left(\textrm{FD}\right){x}_{\textrm{W},\textrm{F}\textrm{D}}+\textrm{F}{x}_{\textrm{W},\textrm{F}}=\textrm{M}{x}_{\textrm{W},\textrm{M}}\Rightarrow \\ {}{x}_{\textrm{W},\textrm{M}}=\frac{\left(\textrm{FD}\right){x}_{\textrm{W},\textrm{F}\textrm{D}}+\textrm{F}{x}_{\textrm{W},\textrm{F}}}{\textrm{M}}=\frac{\left(250\ \textrm{lbm}\right)(0.40)+\left(150\ \textrm{lbm}\right)(0)}{400\ \textrm{lbm}}=0.25\end{array}} $$
$$ {x}_{\textrm{EG},\textrm{M}}=1-{x}_{\textrm{F},\textrm{M}}-{x}_{\textrm{W},\textrm{M}}=1-0.375-0.25=0.375 $$
  1. B.

    Locate the mixture point, M, on the given ternary phase diagram using the preceding compositions. Then, draw the tie line through the mixture point, M, and determine the locations and compositions of the extract, E, and the raffinate, R, on the equilibrium isotherm as shown. The extract, being rich in the solvent, is located closer to the pure solvent on the equilibrium curve and the raffinate is located on the opposite side. On the diagram, EG represents ethylene glycol to make it distinct from E, which represents the extract, and FD represents the feed to make it distinct from F, which represents furfural.

A ternary phase diagram. It has a triangle with the vertices W, F, and E G. Point F D is marked between W and E G. The line is drawn from the point F to the point F D, which divides the triangle into two equal parts. 9 horizontal and right slanting lines are drawn inside the triangle.

From the phase diagram, the compositions of the extract and raffinate are

$$ {y}_{\textrm{EG},\textrm{E}}=0.19,{y}_{\textrm{W},\textrm{E}}=0.07,{y}_{\textrm{F},\textrm{E}}=0.74 $$
$$ {x}_{\textrm{EG},\textrm{R}}=0.49,{x}_{\textrm{W},\textrm{R}}=0.35,{x}_{\textrm{F},\textrm{R}}=0.16 $$

The amounts of the extract and raffinate can be determined from mass and component balances as shown.

Overall mass balance:

$$ \textrm{R}=\textrm{M}-\textrm{E}=400\ \textrm{lbm}-\textrm{E} $$

Mass balance for water:

$$ {\displaystyle \begin{array}{l}\textrm{E}{y}_{\textrm{W},\textrm{E}}+\textrm{R}{x}_{\textrm{W},\textrm{R}}=\textrm{M}{x}_{\textrm{W},\textrm{M}}\Rightarrow \textrm{E}{y}_{\textrm{W},\textrm{E}}+\left(400-\textrm{E}\right){x}_{\textrm{W},\textrm{R}}=400{x}_{\textrm{W},\textrm{M}}\Rightarrow \\ {}\textrm{E}=\frac{400\left({x}_{\textrm{W},\textrm{M}}-{x}_{\textrm{W},\textrm{R}}\right)}{y_{\textrm{W},\textrm{E}}-{x}_{\textrm{W},\textrm{R}}}=\frac{\left(400\ \textrm{lbm}\right)\left(0.25-0.35\right)}{0.07-0.35}=143\ \textrm{lbm}\end{array}} $$
$$ \textrm{R}=400\ \textrm{lbm}-\textrm{E}=400\ \textrm{lbm}-143\ \textrm{lbm}=257\ \textrm{lbm} $$
  1. C.

    The fraction of the solute recovered can be calculated as follows:

$$ \textrm{Recovery}=1-\frac{\left({x}_{\textrm{EG},\textrm{R}}\right)\left(\textrm{R}\right)}{\left({x}_{\textrm{EG},\textrm{F}}\right)\left(\textrm{FD}\right)}=1-\frac{(0.49)\left(257\ \textrm{kg}\right)}{(0.60)\left(250\ \textrm{kg}\right)}=0.1605 $$

5.1.8 Practice Problem 5.8

5.1.8.1 Solution

Draw the schematic diagram for the system as shown.

A block diagram of the system. It consists of N blocks connected in series. Each block has the respective L inlet, and the final output from the Nth block is L subscript N. V subscript N + 1 is given to the Nth block, followed by the others, and exits at the first block.
  1. A.

    Calculate the mass flow rate and composition of the underflow solution, LN as shown.

$$ {\displaystyle \begin{array}{l}{N}_{\textrm{N}}=2\frac{\textrm{kg}\ \textrm{B}}{\textrm{kg}\ \textrm{soln}.}=\frac{B_{\textrm{N}}}{L_{\textrm{N}}}\overset{B_{\textrm{N}}=504\ \textrm{kg}/\textrm{hr}}{\to}\\ {}{L}_{\textrm{N}}=\frac{504\frac{\textrm{kg}\ \textrm{B}}{\textrm{hr}}}{2\frac{\textrm{kg}\ \textrm{B}}{\textrm{kg}\ \textrm{soln}.}}=252\ \textrm{kg}.\textrm{soln}\ \left(\textrm{A}+\textrm{C}\right)/\textrm{hr}\end{array}} $$
$$ {y}_{\textrm{N}}=\frac{{\textrm{C}}_{\textrm{N}}}{L_{\textrm{N}}}=\frac{40\frac{\textrm{kg}}{\textrm{hr}}}{252\frac{\textrm{kg}}{\textrm{hr}}}=0.1587 $$
  1. B.

    Calculate the mass flow rate of the solution, V1.

Mass balance for the solute, C:

$$ {\displaystyle \begin{array}{l}{x}_1=0.20=\frac{{\textrm{C}}_{{\textrm{V}}_1}}{{\textrm{V}}_1}\Rightarrow \\ {}{\textrm{V}}_1=\frac{{\textrm{C}}_{{\textrm{V}}_1}}{0.20}=\frac{156\frac{\textrm{kg}}{\textrm{hr}}}{0.20}=780\ \textrm{kg}/\textrm{hr}\end{array}} $$
  1. C.

    Overall mass balance for the solution (A + C) will result in the answer for the mass flow rate of the pure solvent, VN+1.

$$ {\displaystyle \begin{array}{l}{L}_0+{V}_{N+1}={L}_N+{V}_1\Rightarrow \\ {}{V}_{N+1}={L}_N+{V}_1-{L}_0\\ {}\kern2.2em =252\frac{\textrm{kg}}{\textrm{hr}}+780\frac{\textrm{kg}}{\textrm{hr}}-196\frac{\textrm{kg}}{\textrm{hr}}\\ {}\kern2.3em =836\ \textrm{kg}/\textrm{hr}\end{array}} $$
  1. D.

    The following values can be obtained from a combination of the schematic diagram, from the preceding calculations, and from the equilibrium relationship, y = x.

$$ {\displaystyle \begin{array}{l}{x}_{N+1}=0,\kern3em {x}_{N+1}^{\ast }={y}_N=0.1587\\ {}{x}_1=0.20,\kern2.75em {x}_1^{\ast }={y}_0=1.0\end{array}} $$

Substitute all the known values into Eq. 5.66 to calculate the number of stages required.

$$ N=1+\frac{\log \left[\frac{x_{N+1}-{x}_{N+1}^{\ast }}{x_1-{x}_1^{\ast }}\right]}{\log \left[\frac{x_{N+1}-{x}_1}{x_{N+1}^{\ast }-{x}_1^{\ast }}\right]}=1+\frac{\log \left[\frac{0-0.16}{0.20-1.0}\right]}{\log \left[\frac{0-0.20}{0.16-1.0}\right]}=2.12 $$

5.1.9 Practice Problem 5.9

5.1.9.1 Solution

Obtain the log of the given data and include it in the data table.

PCH4 (kPa)

20

40

60

80

100

mS/mA (g/g)

0.13

0.24

0.35

0.42

0.50

log PCH4

1.30

1.60

1.78

1.90

2.00

log (mS/mA)

−0.89

−0.62

−0.46

−0.38

−0.30

Plot \( \log \left({m}_S/{m}_A\right)\ \textrm{vs}.\log {P}_{CH_4} \) and obtain the slope of the resulting straight line.

A line graph of the log of m subscript s slash m subscript A versus the log of P subscript C H 4. A linear line is plotted through (1.28, negative 0.88) and (2.08, negative 0.18), approximately. Plots are distributed uniformly along the line. A slope of delta x and delta y is drawn along the line.
$$ \textrm{Slope}=\frac{\Delta y}{\Delta x}=\frac{-0.30-\left(-0.80\right)}{2-1.40}=0.833=\frac{1}{n}\Rightarrow n=1.2 $$

Obtain the value of K by taking a point on the graph and substituting the known values into Eq. 5.73.

$$ {\displaystyle \begin{array}{l}\log \left(\frac{m_S}{m_A}\right)=\log K+\left(\frac{1}{n}\right)\log {P}_{{\textrm{CH}}_4}\Rightarrow \\ {}\log K=\log \left(\frac{m_S}{m_A}\right)-\left(\frac{1}{n}\right)\log {P}_{{\textrm{CH}}_4}=-0.46-\left(\frac{1}{1.20}\right)(1.80)=-1.96\\ {}\Rightarrow K={10}^{-1.96}=0.0110\end{array}} $$

Using Eq. 5.72 as a template for Freundlich equation and the parameters just obtained, the Freundlich equation applicable in this situation is

$$ \frac{m_S}{m_A}={KC}^{\frac{1}{n}}\overset{n=1.2,K=0.011}{\to}\frac{m_S}{m_A}=(0.011){\left({P}_{{\textrm{CH}}_4}\right)}^{\frac{1}{1.2}} $$
  1. B.

    For a component in an ideal gas mixture, mole fraction = pressure fraction. Apply the preceding concept to methane in the hydrocarbon mixture. Note that the total pressure is 1 atm = 101 kPa. Therefore,

$$ {y}_{{\textrm{CH}}_4}=\frac{P_{{\textrm{CH}}_4}}{P}\Rightarrow {P}_{{\textrm{CH}}_4}={y}_{{\textrm{CH}}_4}P=(0.02)\left(101\ \textrm{kPa}\right)=2.02\ \textrm{kPa} $$

From the Freundlich equation just derived, determine the mass of the solute (CH4) adsorbed by 100 g of activated carbon (adsorbent/solvent).

$$ {\displaystyle \begin{array}{l}\frac{m_S}{m_A}=(0.011){\left({P}_{{\textrm{CH}}_4}\right)}^{\frac{1}{1.2}}\Rightarrow {m}_S=\left({m}_A\right)(0.011){\left({P}_{{\textrm{CH}}_4}\right)}^{\frac{1}{1.2}}\\ {}=\left(100\ \textrm{g}\right)(0.011){\left(2.02\ \textrm{kPa}\right)}^{\frac{1}{1.2}}\\ {}=1.9762\ \textrm{g}\ {\textrm{CH}}_4\ \textrm{adsorbed}\end{array}} $$

Calculate the moles of CH4 adsorbed by using its molecular weight.

$$ {N}_{{\textrm{CH}}_4}=\frac{m_{{\textrm{CH}}_4}}{M_{{\textrm{CH}}_4}}=\frac{1.9762\ \textrm{g}}{16\frac{\textrm{g}}{\textrm{mol}}}=0.1235\ \textrm{mol} $$

Convert the temperature of the hydrocarbon gas mixture to its absolute value.

$$ T={20}^{{}^{\circ}}\textrm{C}+273=293\ \textrm{K} $$

Calculate the volume of methane adsorbed by using the ideal gas law.

$$ {\displaystyle \begin{array}{l}{PV}_{{\textrm{CH}}_4}={N}_{{\textrm{CH}}_4}\overline{R}T\Rightarrow \\ {}{V}_{{\textrm{CH}}_4}=\frac{N_{{\textrm{CH}}_4}\overline{R}T}{P}=\frac{\left(0.1235\ \textrm{mol}\right)\left(0.0821\frac{\textrm{L}\hbox{-} \textrm{atm}}{\textrm{mol}\cdot \textrm{K}}\right)\left(293\ \textrm{K}\right)}{1\ \textrm{atm}}=2.9708\ \textrm{L}\end{array}} $$

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nandagopal, N.S. (2023). Mass Transfer. In: Chemical Engineering Principles and Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-27879-2_5

Download citation

Publish with us

Policies and ethics

Navigation