Activity Recognition in IoT

  • Chapter
  • First Online:
Self-Powered Internet of Things

Abstract

Due to the advancements in technology and microelectromechanical systems, there is an exceptional development in the capabilities of sensors and smart devices. Nowadays people interact with these devices regularly in their daily lives due to the enhanced computational power, compact size, user-friendly interface and reduced cost of these devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.79
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nalepa GJ, Bobek S, Kutt K, Atzmueller M (2021) Semantic data mining in ubiquitous sensing: a survey. Sensors 21(13):4322

    Article  Google Scholar 

  2. Paulovich FV, De Oliveira MCF, Oliveira ON Jr (2018) A future with ubiquitous sensing and intelligent systems. ACS Sens 3(8):1433–1438

    Article  Google Scholar 

  3. Mora JC, Valencia WM (2018) Exercise and older adults. Clin Geriatr Med 34(1):145–162

    Article  Google Scholar 

  4. Ruiz-Hermosa A, Mota J, Díez-Fernández A, Martínez-Vizcaíno V, Redondo-Tébar A, Sánchez-López M (2019) Relationship between weight status and cognition in children: a mediation analysis of physical fitness components. J Sports Sci

    Google Scholar 

  5. Khan SS, Ye B, Taati B, Mihailidis A (2018) Detecting agitation and aggression in people with dementia using sensorsâ a systematic review. Alzheimer’s & Dementia 14(6):824–832

    Article  Google Scholar 

  6. Mostafa SS, Mendonça F, Ravelo-García AG, Morgado-Dias F (2019) A systematic review of detecting sleep apnea using deep learning. Sensors 19(22):4934

    Article  Google Scholar 

  7. Taj-Eldin M, Ryan C, Flynn BO, Galvin P (2018) A review of wearable solutions for physiological and emotional monitoring for use by people with autism spectrum disorder and their caregivers. Sensors 18(12):4271

    Article  Google Scholar 

  8. Wang X, Ellul J, Azzopardi G (2020) Elderly fall detection systems: a literature survey. Front Robot AI 7:71

    Article  Google Scholar 

  9. Tapia EM, Intille SS, Larson K (2004) Activity recognition in the home using simple and ubiquitous sensors. In: International conference on pervasive computing. Springer, pp 158–175

    Google Scholar 

  10. Ordónez FJ, De Toledo P, Sanchis A (2013) Activity recognition using hybrid generative/discriminative models on home environments using binary sensors. Sensors 13(5):5460–5477

    Article  Google Scholar 

  11. Washington P, Kline A, Mutlu OC, Leblanc E, Hou C, Stockham N, Paskov K, Chrisman B, Wall D (2021) Activity recognition with moving cameras and few training examples: applications for detection of autism-related headbanging. In: Extended abstracts of the 2021 CHI conference on human factors in computing systems, pp 1–7

    Google Scholar 

  12. Putra PU, Shima K, Shimatani K (2018) Markerless human activity recognition method based on deep neural network model using multiple cameras. In: 2018 5th international conference on control, decision and information technologies (CoDIT). IEEE, pp 13–18

    Google Scholar 

  13. JABIL (2022) 3D sensing and gesture recognition. https://www.jabil.com/services/optics/3d-sensing-gesture-recognition.html. Accessed 13 Oct 2022

  14. Wang Y, Cang S, Yu H (2019) A survey on wearable sensor modality centred human activity recognition in health care. Expert Syst Appl 137:167–190

    Article  Google Scholar 

  15. fitbit, fitbit (2022). https://www.fitbit.com/global/us/technology/health-metrics#:%7e:text=Breathing%20rate%2C%20resting%20heart%20rate,with%20Ionic%2C%20Versa%20family%20and. Accessed 18 Oct 2022

  16. Zhang Y, Gao B, Yang D, Woo WL, Wen H (2022) Online learning of wearable sensing for human activity recognition. IEEE Internet of Things J

    Google Scholar 

  17. Seneviratne S, Hu Y, Nguyen T, Lan G, Khalifa S, Thilakarathna K, Hassan M, Seneviratne A (2017) A survey of wearable devices and challenges. IEEE Commun Surv Tutor 19(4):2573–2620

    Article  Google Scholar 

  18. Cook DJ (2007) Making sense of sensor data. IEEE Pervasive Comput 6(2):105–108

    Article  Google Scholar 

  19. Sandhu MM, Geissdoerfer K, Khalifa S, Jurdak R, Portmann M, Kusy B (2020) Towards energy positive sensing using kinetic energy harvesters. In: 2020 IEEE international conference on pervasive computing and communications (PerCom). IEEE, pp 1–10

    Google Scholar 

  20. Khalid F, Hanif MA, Rehman S, Qadir J, Shafique M (2019) Fademl: understanding the impact of pre-processing noise filtering on adversarial machine learning. In: Design, automation & test in Europe conference & Exhibition (DATE). IEEE, pp 902–907

    Google Scholar 

  21. Khan AM, Lee Y-K, Lee S-Y, Kim T-S (2010) Human activity recognition via an accelerometer-enabled-smartphone using kernel discriminant analysis. In: 5th international conference on future information technology. IEEE, pp 1–6

    Google Scholar 

  22. Khan AM, Tufail A, Khattak AM, Laine TH (2014) Activity recognition on smartphones via sensor-fusion and kda-based svms. Int J Distrib Sens Netw 10(5):503291

    Article  Google Scholar 

  23. Berchtold M, Budde M, Gordon D, Schmidtke HR, Beigl M (2010) Actiserv: activity recognition service for mobile phones. In: International symposium on wearable computers (ISWC) 2010. IEEE, pp 1–8

    Google Scholar 

  24. Lu H, Pan W, Lane ND, Choudhury T, Campbell AT (2009) Soundsense: scalable sound sensing for people-centric applications on mobile phones. In: Proceedings of the 7th international conference on Mobile systems, applications, and services, 2009, pp 165–178

    Google Scholar 

  25. Bieber G, Koldrack P, Sablowski C, Peter C, Urban B (2010) Mobile physical activity recognition of stand-up and sit-down transitions for user behavior analysis. In: Proceedings of the 3rd international conference on pervasive technologies related to assistive environments, 2010, pp 1–5

    Google Scholar 

  26. Henpraserttae A, Thiemjarus S, Marukatat S (2011) Accurate activity recognition using a mobile phone regardless of device orientation and location. In: 2011 international conference on body sensor networks. IEEE, pp 41–46

    Google Scholar 

  27. Shoaib M, Bosch S, Incel OD, Scholten H, Havinga PJ (2016) Complex human activity recognition using smartphone and wrist-worn motion sensors. Sensors 16(4):426

    Article  Google Scholar 

  28. Dernbach S, Das B, Krishnan NC, Thomas BL, Cook DJ (2012) Simple and complex activity recognition through smart phones. In: Eighth international conference on intelligent environments. IEEE, pp 214–221

    Google Scholar 

  29. Reddy S, Mun M, Burke J, Estrin D, Hansen M., Srivastava M. (2010) Using mobile phones to determine transportation modes. ACM Trans Sens Netw (TOSN) 6(2), 13

    Google Scholar 

  30. Iso T, Yamazaki K (2006) Gait analyzer based on a cell phone with a single three-axis accelerometer. In: Proceedings of the 8th conference on Human-computer interaction with mobile devices and services, 2006, pp 141–144

    Google Scholar 

  31. Saponas T, Lester J, Froehlich J, Fogarty J, Landay J (2008) ilearn on the iphone: real-time human activity classification on commodity mobile phones. University of Washington CSE Technical Report UW-CSE-08-04-02 2008

    Google Scholar 

  32. Kose M, Incel OD, Ersoy C (2012) Online human activity recognition on smart phones. In: Workshop on mobile sensing: from smartphones and wearables to big data, vol 16, pp 11–15

    Google Scholar 

  33. Schindhelm CK (2012) Activity recognition and step detection with smartphones: towards terminal based indoor positioning system. In: IEEE 23rd international symposium on personal, indoor and mobile radio communications-(PIMRC). IEEE, pp 2454–2459

    Google Scholar 

  34. Martín H, Bernardos AM, Iglesias J, Casar JR (2013) Activity logging using lightweight classification techniques in mobile devices. Pers Ubiquit Comput 17(4):675–695

    Article  Google Scholar 

  35. Yan Z, Chakraborty D, Misra A, Jeung H, Aberer K (2012) Semantic activity classification using locomotive signatures from mobile phones, Technical Report

    Google Scholar 

  36. Yang J (2009) Toward physical activity diary: motion recognition using simple acceleration features with mobile phones. In: Proceedings of the 1st international workshop on Interactive multimedia for consumer electronics, 2009, pp 1–10

    Google Scholar 

  37. Siirtola P, Röning J (2012) Recognizing human activities user-independently on smartphones based on accelerometer data. IJIMAI 1(5):38–45

    Article  Google Scholar 

  38. Siirtola P, Röning J (2013) Ready-to-use activity recognition for smartphones. In: IEEE symposium on computational intelligence and data mining (CIDM). IEEE, pp 59–64

    Google Scholar 

  39. Vo QV, Hoang MT, Choi D (2013) Personalization in mobile activity recognition system using k-medoids clustering algorithm. Int J Distrib Sens Netw

    Google Scholar 

  40. Sandhu MM, Khalifa S, Geissdoerfer K, Jurdak R, Portmann M (2021) SolAR: energy positive human activity recognition using solar cells. In: 2021 IEEE international conference on pervasive computing and communications (PerCom). IEEE, pp 1–10

    Google Scholar 

  41. Khalifa S, Lan G, Hassan M, Seneviratne A, Das SK (2017) Harke: Human activity recognition from kinetic energy harvesting data in wearable devices. IEEE Trans Mob Comput 17(6):1353–1368

    Article  Google Scholar 

  42. Sharma H, Haque A, Blaabjerg F (2021) Machine learning in wireless sensor networks for smart cities: a survey. Electronics 10(9):1012

    Article  Google Scholar 

  43. Otoum S, Kantarci B, Mouftah HT (2019) On the feasibility of deep learning in sensor network intrusion detection. IEEE Netw Lett 1(2):68–71

    Article  Google Scholar 

  44. Joshitha KL, Gangasri A (2017) On an effort to enhance lifetime of a regression based clustered network using candidate selection. In: 2017 international conference on trends in electronics and informatics (ICEI). IEEE, pp 809–814

    Google Scholar 

  45. Borges LM, Velez FJ, Lebres AS (2014) Survey on the characterization and classification of wireless sensor network applications. IEEE Commun Surv Tutor 16(4):1860–1890

    Article  Google Scholar 

  46. Yasaratna R, Yahampath P (2009) Design of scalable decoders for sensor networks via Bayesian network learning. IEEE Trans Commun 57(10):2868–2871

    Article  Google Scholar 

  47. Ferng H-W, Chuang J-S (2017) Area-partitioned clustering and cluster head rotation for wireless sensor networks. In: 2017 international conference on machine learning and cybernetics (ICMLC), vol 2. IEEE, pp 593–598

    Google Scholar 

  48. Sanhaji F, Satori H, Satori K (2019) Cluster head selection based on neural networks in wireless sensor networks. In: 2019 international conference on wireless technologies, embedded and intelligent systems (WITS), IEEE, pp 1–5

    Google Scholar 

  49. Wu J, Li G (2019) Drift calibration using constrained extreme learning machine and Kalman filter in clustered wireless sensor networks. IEEE Access 8:13078–13085

    Article  Google Scholar 

  50. Alsharif MH, Kelechi AH, Yahya K, Chaudhry SA (2020) Machine learning algorithms for smart data analysis in internet of things environment: taxonomies and research trends. Symmetry 12(1):88

    Article  Google Scholar 

  51. Lu H, Yang J, Liu Z, Lane ND, Choudhury T, Campbell AT (2010) The jigsaw continuous sensing engine for mobile phone applications. In: Proceedings of the 8th ACM conference on embedded networked sensor systems, 2010, pp 71–84

    Google Scholar 

  52. Kwapisz JR, Weiss GM, Moore SA (2011) Activity recognition using cell phone accelerometers. ACM SIGKDD Explorations Newsl 12(2):74–82

    Article  Google Scholar 

  53. Das B, Seelye AM, Thomas BL, Cook DJ, Holder LB, Schmitter-Edgecombe M (2012) Using smart phones for context-aware prompting in smart environments. In: IEEE consumer communications and networking conference (CCNC). IEEE, pp 399–403

    Google Scholar 

  54. Miluzzo E, Lane ND, Fodor K, Peterson R, Lu H, Musolesi M, Eisenman SB, Zheng X, Campbell AT (2008) Sensing meets mobile social networks: the design, implementation and evaluation of the cenceme application. In: Proceedings of the 6th ACM conference on embedded network sensor systems, 2008, pp 337–350

    Google Scholar 

  55. Lara OD, Labrador MA (2012) A mobile platform for real-time human activity recognition. In: IEEE consumer communications and networking conference (CCNC). IEEE, pp 667–671

    Google Scholar 

  56. Anjum A, Ilyas MU (2013) Activity recognition using smartphone sensors. In: IEEE 10th consumer communications and networking conference (CCNC). IEEE, pp 914–919

    Google Scholar 

  57. Fan L, Wang Z, Wang H (2013) Human activity recognition model based on decision tree. In: 2013 international conference on advanced cloud and big data. IEEE, pp 64–68

    Google Scholar 

  58. Chien C, Pottie GJ (2012) A universal hybrid decision tree classifier design for human activity classification. In: Annual international conference of the IEEE engineering in medicine and biology society. IEEE, pp 1065–1068

    Google Scholar 

  59. McCarthy MW, James DA, Lee JB, Rowlands DD (2015) Decision-tree-based human activity classification algorithm using single-channel foot-mounted gyroscope. Electron Lett 51(9):675–676

    Article  Google Scholar 

  60. Maswadi K, Ghani NA, Hamid S, Rasheed MB (2021) Human activity classification using decision tree and Naive Bayes classifiers. Multimed Tools Appl 80(14):21709–21726

    Article  Google Scholar 

  61. Ustev YE, Durmaz Incel O, Ersoy C (2013) User, device and orientation independent human activity recognition on mobile phones: challenges and a proposal. In: Proceedings of the 2013 ACM conference on pervasive and ubiquitous computing adjunct publication, 2013, pp 1427–1436

    Google Scholar 

  62. Thiemjarus S, Henpraserttae A, Marukatat S (2013) A study on instance-based learning with reduced training prototypes for device-context-independent activity recognition on a mobile phone. In: 2013 IEEE international conference on body sensor networks. IEEE, pp 1–6

    Google Scholar 

  63. Mohsen S, Elkaseer A, Scholz SG (2021) Human activity recognition using k-nearest neighbor machine learning algorithm. In: Proceedings of the international conference on sustainable design and manufacturing. Springer, pp 304–313

    Google Scholar 

  64. Attal F, Mohammed S, Dedabrishvili M, Chamroukhi F, Oukhellou L, Amirat Y (2015) Physical human activity recognition using wearable sensors. Sensors 15(12):31314–31338

    Article  Google Scholar 

  65. Cao H, Nguyen MN, Phua C, Krishnaswamy S, Li X-L (2012) An integrated framework for human activity recognition. In: Proceedings of the 2012 ACM conference on ubiquitous computing, 2012, pp 621–622

    Google Scholar 

  66. Gomes JB, Krishnaswamy S, Gaber MM, Sousa PA, Menasalvas E (2012) Mars: a personalised mobile activity recognition system. In: 2012 IEEE 13th international conference on mobile data management. IEEE, pp 316–319

    Google Scholar 

  67. Ali A, Samara W, Alhaddad D, Ware A, Saraereh OA (2022) Human activity and motion pattern recognition within indoor environment using convolutional neural networks clustering and naive bayes classification algorithms. Sensors 22(3):1016

    Article  Google Scholar 

  68. Ahmed N, Rafiq JI, Islam MR (2020) Enhanced human activity recognition based on smartphone sensor data using hybrid feature selection model. Sensors 20(1):317

    Article  Google Scholar 

  69. Hassan MM, Uddin MZ, Mohamed A, Almogren A (2018) A robust human activity recognition system using smartphone sensors and deep learning. Futur Gener Comput Syst 81:307–313

    Article  Google Scholar 

  70. Naveed H, Khan G, Khan AU, Siddiqi A, Khan MUG (2019) Human activity recognition using mixture of heterogeneous features and sequential minimal optimization. Int J Mach Learn Cybern 10(9):2329–2340

    Article  Google Scholar 

  71. De Leonardis G, Rosati S, Balestra G, Agostini V, Panero E, Gastaldi L, Knaflitz M (2018) Human activity recognition by wearable sensors: Comparison of different classifiers for real-time applications. In: (2018) IEEE international symposium on medical measurements and applications (memea). IEEE, pp 1–6

    Google Scholar 

  72. Aljarrah AA, Ali AH (2019) Human activity recognition using PCA and BiLSTM recurrent neural networks. In: 2019 2nd international conference on engineering technology and its applications (IICETA). IEEE, pp 156–160

    Google Scholar 

  73. Khan AM, Siddiqi MH, Lee S-W (2013) Exploratory data analysis of acceleration signals to select light-weight and accurate features for real-time activity recognition on smartphones. Sensors 13(10):13099–13122

    Article  Google Scholar 

  74. Devarakonda PG, Bozic B (2022) Particle swarm optimization of convolutional neural networks for human activity prediction. In: Optimisation algorithms and swarm intelligence, IntechOpen

    Google Scholar 

  75. Xu C, Chai D, He J, Zhang X, Duan S (2019) Innohar: a deep neural network for complex human activity recognition. IEEE Access 7:9893–9902

    Article  Google Scholar 

  76. Ignatov A (2018) Real-time human activity recognition from accelerometer data using convolutional neural networks. Appl Soft Comput 62:915–922

    Article  Google Scholar 

  77. Gholamiangonabadi D, Grolinger K (2022) Personalized models for human activity recognition with wearable sensors: deep neural networks and signal processing. Appl Intell 1–21

    Google Scholar 

  78. Chavarriaga R, Sagha H, Calatroni A, Digumarti ST, Tröster G, Millán JDR, Roggen D (2013) The opportunity challenge: a benchmark database for on-body sensor-based activity recognition. Pattern Recognit Lett 34(15):2033–2042

    Google Scholar 

  79. Anguita D, Ghio A, Oneto L, Parra Perez X, Reyes Ortiz JL (2013) A public domain dataset for human activity recognition using smartphones. In: Proceedings of the 21th international European symposium on artificial neural networks, computational intelligence and machine learning, 2013, pp 437–442

    Google Scholar 

  80. Reiss A, Stricker D (2012) Introducing a new benchmarked dataset for activity monitoring. In: 16th international symposium on wearable computers. IEEE, pp 108–109

    Google Scholar 

  81. Zhang M, Sawchuk AA (2012) USC-HAD: a daily activity dataset for ubiquitous activity recognition using wearable sensors. In: Proceedings of the 2012 ACM conference on ubiquitous computing, 2012, pp 1036–1043

    Google Scholar 

  82. Banos O, Garcia R, Holgado-Terriza JA, Damas M, Pomares H, Rojas I, Saez A, Villalonga C (2014) mHealthDroid: a novel framework for agile development of mobile health applications. In: International workshop on ambient assisted living. Springer, pp 91–98

    Google Scholar 

  83. Vaizman Y, Ellis K, Lanckriet G (2017) Recognizing detailed human context in the wild from smartphones and smartwatches. IEEE Pervasive Comput 16(4):62–74

    Article  Google Scholar 

  84. Shoaib M, Bosch S, Incel OD, Scholten H, Havinga PJ (2014) Fusion of smartphone motion sensors for physical activity recognition. Sensors 14(6):10146–10176

    Article  Google Scholar 

  85. Micucci D, Mobilio M, Napoletano P (2017) Unimib shar: a dataset for human activity recognition using acceleration data from smartphones. Appl Sci 7(10):1101

    Article  Google Scholar 

  86. Sandhu MM, Khalifa S, Jurdak R, Portmann M (2021) Task scheduling for energy-harvesting-based iot: a survey and critical analysis. IEEE Internet Things J 8(18):13825–13848

    Article  Google Scholar 

  87. Khalifa S, Hassan M, Seneviratne A, Das SK (2015) Energy-harvesting wearables for activity-aware services. IEEE Internet Comput 19(5):8–16

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Moid Sandhu .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sandhu, M.M., Khalifa, S., Portmann, M., Jurdak, R. (2023). Activity Recognition in IoT. In: Self-Powered Internet of Things. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-27685-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27685-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27684-2

  • Online ISBN: 978-3-031-27685-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation