A Ciliary Branched Actin Network Drives Photoreceptor Disc Morphogenesis

  • Conference paper
  • First Online:
Retinal Degenerative Diseases XIX

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1415))

Abstract

The light-detecting organelle of the photoreceptor cell is a modified primary cilium, called the outer segment. The outer segment houses hundreds of light-sensitive membrane, “discs,” that are continuously renewed by the constant formation of new discs at the outer segment base and the phagocytosis of old ones from outer segment tips by the retinal pigment epithelium. In this chapter, we describe how an actin cytoskeleton network, residing precisely at the site of disc formation, provides the driving force that pushes out the ciliary plasma membrane to form each disc evagination that subsequently can mature into a bona fide disc. We highlight the functions of actin-binding proteins, particularly PCARE and Arp2/3, that are known to participate in disc formation. Finally, we describe a working model of disc formation built upon the many studies focusing on the role of actin during disc morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 263.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 329.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arikawa K, Williams DS. Organization of actin filaments and immunocolocalization of alpha-actinin in the connecting cilium of rat photoreceptors. J Comp Neurol. 1989;288:640–6.

    Article  CAS  PubMed  Google Scholar 

  2. Besharse JC, Hollyfield JG, Rayborn ME. Turnover of rod photoreceptor outer segments. II. Membrane addition and loss in relationship to light. J Cell Biol. 1977;75:507–27.

    Article  CAS  PubMed  Google Scholar 

  3. Blanchoin L, Boujemaa-Paterski R, Sykes C, et al. Actin dynamics, architecture, and mechanics in cell motility. Physiol Rev. 2014;94:235–63.

    Article  CAS  PubMed  Google Scholar 

  4. Chaitin MH, Bok D. Immunoferritin localization of actin in retinal photoreceptors. Invest Ophthalmol Vis Sci. 1986;27:1764–7.

    CAS  PubMed  Google Scholar 

  5. Chaitin MH, Burnside B. Actin filament polarity at the site of rod outer segment disk morphogenesis. Invest Ophthalmol Vis Sci. 1989;30:2461–9.

    CAS  PubMed  Google Scholar 

  6. Chaitin MH, Carlsen RB, Samara GJ. Immunogold localization of actin in develo** photoreceptor cilia of normal and rds mutant mice. Exp Eye Res. 1988;47:437–46.

    Article  CAS  PubMed  Google Scholar 

  7. Chaitin MH, Schneider BG, Hall MO, et al. Actin in the photoreceptor connecting cilium: immunocytochemical localization to the site of outer segment disk formation. J Cell Biol. 1984;99:239–47.

    Article  CAS  PubMed  Google Scholar 

  8. Chen Z, Borek D, Padrick SB, et al. Structure and control of the actin regulatory WAVE complex. Nature. 2010;468:533–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Corral-Serrano JC, Lamers IJC, van Reeuwijk J, et al. PCARE and WASF3 regulate ciliary F-actin assembly that is required for the initiation of photoreceptor outer segment disk formation. Proc Natl Acad Sci U S A. 2020;117:9922–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hale IL, Fisher SK, Matsumoto B. The actin network in the ciliary stalk of photoreceptors functions in the generation of new outer segment discs. J Comp Neurol. 1996;376:128–42.

    Article  CAS  PubMed  Google Scholar 

  11. Haruta M, Bush RA, Kjellstrom S, et al. Depleting Rac1 in mouse rod photoreceptors protects them from photo-oxidative stress without affecting their structure or function. Proc Natl Acad Sci U S A. 2009;106:9397–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kaplan MW. Disk membrane initiation and insertion are not required for axial disk displacement in Xenopus laevis rod outer segments. Curr Eye Res. 1998;17:73–8.

    Article  CAS  PubMed  Google Scholar 

  13. Kevany BM, Zhang N, Jastrzebska B, et al. Animals deficient in C2Orf71, an autosomal recessive retinitis pigmentosa-associated locus, develop severe early-onset retinal degeneration. Hum Mol Genet. 2015;24:2627–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nemet I, Tian G, Imanishi Y. Submembrane assembly and renewal of rod photoreceptor cGMP-gated channel: insight into the actin-dependent process of outer segment morphogenesis. J Neurosci. 2014;34:8164–74.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nishimura DY, Baye LM, Perveen R, et al. Discovery and functional analysis of a retinitis pigmentosa gene, C2ORF71. Am J Hum Genet. 2010;86:686–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sandoz D, Gounon P, Karsenti E, et al. Immunocytochemical localization of tubulin, actin, and myosin in axonemes of ciliated cells from quail oviduct. Proc Natl Acad Sci U S A. 1982;79:3198–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Soderling SH. Grab your partner with both hands: cytoskeletal remodeling by Arp2/3 signaling. Sci Signal. 2009;2:pe5.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Spencer WJ, Lewis TR, Pearring JN, et al. Photoreceptor discs: built like Ectosomes. Trends Cell Biol. 2020;30:904–15.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Spencer WJ, Lewis TR, Phan S, et al. Photoreceptor disc membranes are formed through an Arp2/3-dependent lamellipodium-like mechanism. Proc Natl Acad Sci U S A. 2019;116:27043–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vaughan DK, Fisher SK. The distribution of F-actin in cells isolated from vertebrate retinas. Exp Eye Res. 1987;44:393–406.

    Article  CAS  PubMed  Google Scholar 

  21. Vaughan DK, Fisher SK. Cytochalasin D disrupts outer segment disc morphogenesis in situ in rabbit retina. Invest Ophthalmol Vis Sci. 1989;30:339–42.

    CAS  PubMed  Google Scholar 

  22. Williams DS, Linberg KA, Vaughan DK, et al. Disruption of microfilament organization and deregulation of disk membrane morphogenesis by cytochalasin D in rod and cone photoreceptors. J Comp Neurol. 1988;272:161–76.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants EY012859, EY030451, and EY005722; the Knights Templar Eye Foundation; and Unrestricted Grant from Research to Prevent Blindness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Spencer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Spencer, W.J., Arshavsky, V.Y. (2023). A Ciliary Branched Actin Network Drives Photoreceptor Disc Morphogenesis. In: Ash, J.D., Pierce, E., Anderson, R.E., Bowes Rickman, C., Hollyfield, J.G., Grimm, C. (eds) Retinal Degenerative Diseases XIX. Advances in Experimental Medicine and Biology, vol 1415. Springer, Cham. https://doi.org/10.1007/978-3-031-27681-1_74

Download citation

Publish with us

Policies and ethics

Navigation