Perspectives on Retinal Dolichol Metabolism, and Visual Deficits in Dolichol Metabolism-Associated Inherited Disorders

  • Conference paper
  • First Online:
Retinal Degenerative Diseases XIX

Abstract

De novo synthesis of dolichol (Dol) and dolichyl phosphate (Dol-P) is essential for protein glycosylation. Herein, we provide a brief overview of Dol and Dol-P synthesis and the maintenance of their cellular content. Retinal Dol metabolism and the requirement of Dol-linked oligosaccharide synthesis in the neural retina also are discussed. There are recently discovered and an emerging class of rare congenital disorders that affect Dol metabolism, involving the genes DHDDS, NUS1, SRD5A3, and DOLK. Further understanding of these congenital disorders is evolving, based upon studies utilizing yeast and murine models, as well as clinical reports of these rare disorders. We summarize the known visual deficits associated with Dol metabolism disorders, and identify the need for generation and characterization of suitable animal models of these disorders to elucidate the underlying molecular and cellular mechanisms of the associated retinopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edani BH, Grabinska KA, Zhang R, Park EJ, Siciliano B, Surmacz L, et al. Structural elucidation of the cis-prenyltransferase NgBR/DHDDS complex reveals insights in regulation of protein glycosylation. Proc. Natl. Acad. Sci. U. S. A. 2020;117(34):20794–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bar-El ML, Vankova P, Yeheskel A, Simhaev L, Engel H, Man P, et al. Structural basis of heterotetrameric assembly and disease mutations in the human cis-prenyltransferase complex. Nat. Commun. 2020;11(1):5273.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ramachandra Rao S, Fliesler SJ. Cholesterol homeostasis in the vertebrate retina: biology and pathobiology. J. Lipid Res. 2021;62:100057.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ramachandra Rao S, Skelton LA, Wu F, Onysk A, Spolnik G, Danikiewicz W, et al. Retinal degeneration caused by rod-specific dhdds ablation occurs without concomitant inhibition of protein N-glycosylation. iScience. 2020;23(6):101198.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Cantagrel V, Lefeber DJ, Ng BG, Guan Z, Silhavy JL, Bielas SL, et al. SRD5A3 is required for converting polyprenol to dolichol and is mutated in a congenital glycosylation disorder. Cell. 2010;142(2):203–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Leloir LF. The role of dolichol in protein glycosylation. Adv. Exp. Med. Biol. 1977;83:9–19.

    CAS  PubMed  Google Scholar 

  7. Parodi AJ. Synthesis of glycosyl-dolichol derivatives in bakers’ yeast and their role in protein glycosylation. Eur. J. Biochem. 1977;75(1):171–80.

    CAS  PubMed  Google Scholar 

  8. Scher MG, Waechter CJ. Brain dolichyl pyrophosphate phosphatase. Solubilization, characterization, and differentiation from dolichyl monophosphate phosphatase activity. J. Biol. Chem. 1984;259(23):14580–5.

    CAS  PubMed  Google Scholar 

  9. Shridas P, Waechter CJ. Human dolichol kinase, a polytopic endoplasmic reticulum membrane protein with a cytoplasmically oriented CTP-binding site. J. Biol. Chem. 2006;281(42):31696–704.

    CAS  PubMed  Google Scholar 

  10. Verchere A, Cowton A, Jenni A, Rauch M, Haner R, Graumann J, et al. Complexity of the eukaryotic dolichol-linked oligosaccharide scramblase suggested by activity correlation profiling mass spectrometry. Sci. Rep. 2021;11(1):1411.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sanyal S, Menon AK. Stereoselective transbilayer translocation of mannosyl phosphoryl dolichol by an endoplasmic reticulum flippase. Proc. Natl. Acad. Sci. U. S. A. 2010;107(25):11289–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sanyal S, Menon AK. Specific transbilayer translocation of dolichol-linked oligosaccharides by an endoplasmic reticulum flippase. Proc. Natl. Acad. Sci. U. S. A. 2009;106(3):767–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sanyal S, Frank CG, Menon AK. Distinct flippases translocate glycerophospholipids and oligosaccharide diphosphate dolichols across the endoplasmic reticulum. Biochemistry. 2008;47(30):7937–46.

    CAS  PubMed  Google Scholar 

  14. Rush JS, Gao N, Lehrman MA, Waechter CJ. Recycling of dolichyl monophosphate to the cytoplasmic leaflet of the endoplasmic reticulum after the cleavage of dolichyl pyrophosphate on the lumenal monolayer. J. Biol. Chem. 2008;283(7):4087–93.

    CAS  PubMed  Google Scholar 

  15. Keller RK, Jehle E, Adair WL Jr. The origin of dolichol in the liver of the rat. Determination of the dietary contribution. J. Biol. Chem. 1982;257(15):8985–9.

    CAS  PubMed  Google Scholar 

  16. Rip JW, Carroll KK. Distribution, metabolism and excretion of [1-14C]dolichol injected intravenously into rats. Biochem. J. 1985;227(3):705–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Crick DC, Carroll KK. Absorption and distribution of [1-14C]dolichol intubated into rats. Biochem. Cell Biol. 1987;65(4):317–20.

    CAS  PubMed  Google Scholar 

  18. Elmberger PG, Engfeldt P, Dallner G. Presence of dolichol and its derivatives in human blood. J. Lipid Res. 1988;29(12):1651–62.

    CAS  PubMed  Google Scholar 

  19. Elmberger PG, Kalen A, Brunk UT, Dallner G. Discharge of newly-synthesized dolichol and ubiquinone with lipoproteins to rat liver perfusate and to the bile. Lipids. 1989;24(11):919–30.

    CAS  PubMed  Google Scholar 

  20. Van Dessel G, Lagrou A, Hilderson HJ, Dierick W. The shuttling of dolichol between VLDL and HDL: involvement of a protein factor from lipoprotein-deficient human serum. Biochim. Biophys. Acta. 1993;1166(1):64–72.

    CAS  PubMed  Google Scholar 

  21. Marinari UM, Pronzato MA, Dapino D, Gazzo P, Traverso N, Cottalasso D, et al. Effects of simvastatin on liver and plasma levels of cholesterol, dolichol and ubiquinol in hypercholesterolemic rats. Ital. J. Biochem. 1995;44(1):1–9.

    CAS  PubMed  Google Scholar 

  22. Kuriyama M, Yoshidome H, Nakahara K, Nakagawa H, Fujiyama J, Take H, et al. Blood dolichols in a patient with abetalipoproteinaemia. Ann. Clin. Biochem. 1999;36(Pt 2):176–9.

    PubMed  Google Scholar 

  23. Shiota Y, Kiyota K, Kobayashi T, Kano S, Kawamura M, Matsushima T, et al. Distribution of dolichol in the serum and relationships between serum dolichol levels and various laboratory test values. Biol. Pharm. Bull. 2008;31(3):340–7.

    CAS  PubMed  Google Scholar 

  24. Van Dessel G, Van Meirvenne H, Lagrou A, Hilderson H, Dierick W. Uptake of dolichol by Vero cells. Biochem. Cell Biol. 1992;70(6):475–80.

    PubMed  Google Scholar 

  25. Borgford TJ, Hurta RA, Tough DF, Burton DN. Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase and lipid metabolism in a concanavalin A-resistant Chinese hamster ovary cell line. Arch. Biochem. Biophys. 1986;244(2):502–16.

    CAS  PubMed  Google Scholar 

  26. Dull BJ, McCarthy RD, Kilara A. The modulating effect of an inhibitor of cholesterol genesis present in bovine milk upon the synthesis of cholesterol, dolichol and ubiquinone. Atherosclerosis. 1983;49(3):231–9.

    CAS  PubMed  Google Scholar 

  27. Filipovic I, Menzel B. Action of low-density lipoprotein and compactin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase, on the synthesis of dolichol-linked oligosaccharides and low-density-lipoprotein receptor in human skin fibroblasts. Biochem. J. 1981;196(2):625–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Appelkvist EL, Edlund C, Low P, Schedin S, Kalen A, Dallner G. Effects of inhibitors of hydroxymethylglutaryl coenzyme A reductase on coenzyme Q and dolichol biosynthesis. Clin. Investig. 1993;71(8 Suppl):S97–102.

    CAS  PubMed  Google Scholar 

  29. Keller RK, Fliesler SJ, Nellis SW. Isoprenoid biosynthesis in the retina. Quantitation of the sterol and dolichol biosynthetic pathways. J. Biol. Chem. 1988;263(5):2250–4.

    CAS  PubMed  Google Scholar 

  30. Fliesler SJ, Florman R, Rapp LM, Pittler SJ, Keller RK. In vivo biosynthesis of cholesterol in the rat retina. FEBS Lett. 1993;335(2):234–8.

    CAS  PubMed  Google Scholar 

  31. Kean EL. GDP-mannose-polyprenyl phosphate mannosyltransferases of the retina. J. Biol. Chem. 1977;252(16):5622–9.

    CAS  PubMed  Google Scholar 

  32. Kean EL. Mannosyl transferases of the retina: mannolipid and complex glycan biosynthesis. I. Kinetic properties; product identification. Exp. Eye Res. 1977;25(4):405–17.

    CAS  PubMed  Google Scholar 

  33. Kean EL. Activation by dolichol phosphate-mannose of the biosynthesis of N-acetylglucosaminylpyrophosphoryl polyprenols by the retina. J. Biol. Chem. 1982;257(14):7952–4.

    CAS  PubMed  Google Scholar 

  34. Kean EL. Influence of metal ions on the biosynthesis of N-acetylglucosaminyl polyprenols by the retina. Biochim. Biophys. Acta. 1983;750(2):268–73.

    CAS  PubMed  Google Scholar 

  35. Plantner JJ, Kean EL. The dolichol pathway in the retina: oligosaccharide-lipid biosynthesis. Exp. Eye Res. 1988;46(5):785–800.

    CAS  PubMed  Google Scholar 

  36. Kean EL. The dolichol pathway in the retina and its involvement in the glycosylation of rhodopsin. Biochim. Biophys. Acta. 1999;1473(2–3):272–85.

    CAS  PubMed  Google Scholar 

  37. O'Brien PJ. Incorporation of mannose into rhodopsin in isolated bovine retina. Exp. Eye Res. 1977;24(5):449–58.

    CAS  PubMed  Google Scholar 

  38. Pittler SJ, Fliesler SJ, Fisher PL, Keller PK, Rapp LM. In vivo requirement of protein prenylation for maintenance of retinal cytoarchitecture and photoreceptor structure. J. Cell Biol. 1995;130(2):431–9.

    CAS  PubMed  Google Scholar 

  39. Pittler SJ, Fliesler SJ, Rapp LM. Novel morphological changes in rat retina induced by intravitreal injection of lovastatin. Exp. Eye Res. 1992;54(1):149–52.

    CAS  PubMed  Google Scholar 

  40. Fliesler SJ, Rapp LM, Hollyfield JG. Photoreceptor-specific degeneration caused by tunicamycin. Nature. 1984;311(5986):575–7.

    CAS  PubMed  Google Scholar 

  41. Fliesler SJ, Basinger SF. Tunicamycin blocks the incorporation of opsin into retinal rod outer segment membranes. Proc. Natl. Acad. Sci. U. S. A. 1985;82(4):1116–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Fliesler SJ, Rayborn ME, Hollyfield JG. Membrane morphogenesis in retinal rod outer segments: inhibition by tunicamycin. J. Cell Biol. 1985;100(2):574–87.

    CAS  PubMed  Google Scholar 

  43. Tam BM, Moritz OL. The role of rhodopsin glycosylation in protein folding, trafficking, and light-sensitive retinal degeneration. J. Neurosci. 2009;29(48):15145–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim KJ, Kim C, Bok J, Kim KS, Lee EJ, Park SP, et al. Spectrum of rhodopsin mutations in Korean patients with retinitis pigmentosa. Mol. Vis. 2011;17:844–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Murray AR, Vuong L, Brobst D, Fliesler SJ, Peachey NS, Gorbatyuk MS, et al. Glycosylation of rhodopsin is necessary for its stability and incorporation into photoreceptor outer segment discs. Hum. Mol. Genet. 2015;24(10):2709–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lefeber DJ, de Brouwer AP, Morava E, Riemersma M, Schuurs-Hoeijmakers JH, Absmanner B, et al. Autosomal recessive dilated cardiomyopathy due to DOLK mutations results from abnormal dystroglycan O-mannosylation. PLoS Genet. 2011;7(12):e1002427.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zelinger L, Banin E, Obolensky A, Mizrahi-Meissonnier L, Beryozkin A, Bandah-Rozenfeld D, et al. A missense mutation in DHDDS, encoding dehydrodolichyl diphosphate synthase, is associated with autosomal-recessive retinitis pigmentosa in Ashkenazi Jews. Am. J. Hum. Genet. 2011;88(2):207–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Züchner S, Dallman J, Wen R, Beecham G, Naj A, Farooq A, et al. Whole-exome sequencing links a variant in DHDDS to retinitis pigmentosa. Am. J. Hum. Genet. 2011;88(2):201–6.

    PubMed  PubMed Central  Google Scholar 

  49. Wen R, Lam BL, Guan Z. Aberrant dolichol chain lengths as biomarkers for retinitis pigmentosa caused by impaired dolichol biosynthesis. J. Lipid Res. 2013;54(12):3516–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sabry S, Vuillaumier-Barrot S, Mintet E, Fasseu M, Valayannopoulos V, Heron D, et al. A case of fatal type I congenital disorders of glycosylation (CDG I) associated with low dehydrodolichol diphosphate synthase (DHDDS) activity. Orphanet J. Rare Dis. 2016;11(1):84.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Venturini G, Koskiniemi-Kuendig H, Harper S, Berson EL, Rivolta C. Two specific mutations are prevalent causes of recessive retinitis pigmentosa in North American patients of Jewish ancestry. Genet. Med. 2015;17(4):285–90.

    CAS  PubMed  Google Scholar 

  52. Biswas P, Duncan JL, Maranhao B, Kozak I, Branham K, Gabriel L, et al. Genetic analysis of 10 pedigrees with inherited retinal degeneration by exome sequencing and phenotype-genotype association. Physiol. Genomics. 2017;49(4):216–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kimchi A, Khateb S, Wen R, Guan Z, Obolensky A, Beryozkin A, et al. Nonsyndromic retinitis Pigmentosa in the Ashkenazi Jewish population: genetic and clinical aspects. Ophthalmology. 2018;125(5):725–34.

    PubMed  Google Scholar 

  54. Park EJ, Grabinska KA, Guan Z, Stranecky V, Hartmannova H, Hodanova K, et al. Mutation of Nogo-B receptor, a subunit of cis-prenyltransferase, causes a congenital disorder of glycosylation. Cell Metab. 2014;20(3):448–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Piccolo G, Amadori E, Vari MS, Marchese F, Riva A, Ghirotto V, et al. Complex neurological phenotype associated with a De Novo DHDDS mutation in a boy with intellectual disability, refractory epilepsy, and movement disorder. J Pediatr Genet. 2021;10(3):236–8.

    PubMed  Google Scholar 

  56. Galosi S, Edani BH, Martinelli S, Hansikova H, Eklund EA, Caputi C, et al. De novo DHDDS variants cause a neurodevelopmental and neurodegenerative disorder with myoclonus. Brain; 2021.

    Google Scholar 

  57. Courage C, Oliver KL, Park EJ, Cameron JM, Grabinska KA, Muona M, et al. Progressive myoclonus epilepsies-residual unsolved cases have marked genetic heterogeneity including dolichol-dependent protein glycosylation pathway genes. Am. J. Hum. Genet. 2021;108(4):722–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Wen R, Dallman JE, Li Y, Zuchner SL, Vance JM, Pericak-Vance MA, et al. Knock-down DHDDS expression induces photoreceptor degeneration in zebrafish. Adv. Exp. Med. Biol. 2014;801:543–50.

    PubMed  Google Scholar 

  59. Ramachandra Rao S, Fliesler SJ, Kotla P, Nguyen MN, Pittler SJ. Lack of overt retinal degeneration in a K42E Dhdds knock-in mouse model of RP59. Cell. 2020;9(4):4.

    Google Scholar 

  60. DeRamus ML, Davis SJ, Rao SR, Nyankerh C, Stacks D, Kraft TW, et al. Selective ablation of dehydrodolichyl diphosphate synthase in murine retinal pigment epithelium (RPE) causes RPE atrophy and retinal degeneration. Cell. 2020;9(3):3.

    Google Scholar 

  61. Murray AR, Fliesler SJ, Al-Ubaidi MR. Rhodopsin: the functional significance of asn-linked glycosylation and other post-translational modifications. Ophthalmic Genet. 2009;30(3):109–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Harrison KD, Park EJ, Gao N, Kuo A, Rush JS, Waechter CJ, et al. Nogo-B receptor is necessary for cellular dolichol biosynthesis and protein N-glycosylation. EMBO J. 2011;30(12):2490–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Harrison KD, Miao RQ, Fernandez-Hernando C, Suarez Y, Davalos A, Sessa WC. Nogo-B receptor stabilizes Niemann-Pick type C2 protein and regulates intracellular cholesterol trafficking. Cell Metab. 2009;10(3):208–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhao B, Hu W, Kumar S, Gonyo P, Rana U, Liu Z, et al. The Nogo-B receptor promotes Ras plasma membrane localization and activation. Oncogene. 2017;36(24):3406–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Yang YD, Li MM, Xu G, Feng L, Zhang EL, Chen J, et al. Nogo-B receptor directs mitochondria-associated membranes to regulate vascular smooth muscle cell proliferation. Int. J. Mol. Sci. 2019;20(9):9.

    Google Scholar 

  66. Yu SH, Wang T, Wiggins K, Louie RJ, Merino EF, Skinner C, et al. Lysosomal cholesterol accumulation contributes to the movement phenotypes associated with NUS1 haploinsufficiency. Genet. Med. 2021;23(7):1305–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ory DS. Getting a “hold” on NPC2. Cell Metab. 2009;10(3):161–2.

    CAS  PubMed  Google Scholar 

  68. Park EJ, Grabinska KA, Guan Z, Sessa WC. NgBR is essential for endothelial cell glycosylation and vascular development. EMBO Rep. 2016;17(2):167–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang P, Cui D, Liao P, Yuan X, Yang N, Zhen Y, et al. Case report: clinical features of a Chinese boy with epileptic seizures and intellectual disabilities who carries a truncated NUS1 variant. Front. Pediatr. 2021;9:725231.

    PubMed  PubMed Central  Google Scholar 

  70. Sagami H, Kurisaki A, Ogura K. Formation of dolichol from dehydrodolichol is catalyzed by NADPH-dependent reductase localized in microsomes of rat liver. J. Biol. Chem. 1993;268(14):10109–13.

    CAS  PubMed  Google Scholar 

  71. Medina-Cano D, Ucuncu E, Nguyen LS, Nicouleau M, Lipecka J, Bizot JC, et al. High N-glycan multiplicity is critical for neuronal adhesion and sensitizes the develo** cerebellum to N-glycosylation defect. Elife. 2018;7:7.

    Google Scholar 

  72. Taylor RL, Arno G, Poulter JA, Khan KN, Morarji J, Hull S, et al. Association of steroid 5alpha-reductase type 3 congenital disorder of glycosylation with early-onset retinal dystrophy. JAMA Ophthalmol. 2017;135(4):339–47.

    PubMed  Google Scholar 

  73. Grundahl JE, Guan Z, Rust S, Reunert J, Muller B, Du Chesne I, et al. Life with too much polyprenol: polyprenol reductase deficiency. Mol. Genet. Metab. 2012;105(4):642–51.

    CAS  PubMed  Google Scholar 

  74. Wheeler PG, Ng BG, Sanford L, Sutton VR, Bartholomew DW, Pastore MT, et al. SRD5A3-CDG: expanding the phenotype of a congenital disorder of glycosylation with emphasis on adult onset features. Am. J. Med. Genet. A. 2016;170(12):3165–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 2015;43(Database issue):D222–6.

    CAS  PubMed  Google Scholar 

  76. Ishikawa K, Mihara Y, Gondoh K, Suzuki E, Asano Y. X-ray structures of a novel acid phosphatase from Escherichia blattae and its complex with the transition-state analog molybdate. EMBO J. 2000;19(11):2412–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res. 2020;48(D1):D265–D8.

    CAS  PubMed  Google Scholar 

  78. Scher MG, Sumbilla CM, Waechter CJ. Dolichyl phosphate metabolism in brain. Developmental increase in polyisoprenyl phosphate phosphatase activity. J. Biol. Chem. 1985;260(25):13742–6.

    CAS  PubMed  Google Scholar 

  79. Bhat NR, Frank DW, Wolf MJ, Waechter CJ. Developmental changes in enzymes involved in dolichyl phosphate metabolism in cultured embryonic rat brain cells. J. Neurochem. 1991;56(1):339–44.

    CAS  PubMed  Google Scholar 

  80. Rush JS, Cho SK, Jiang S, Hofmann SL, Waechter CJ. Identification and characterization of a cDNA encoding a dolichyl pyrophosphate phosphatase located in the endoplasmic reticulum of mammalian cells. J. Biol. Chem. 2002;277(47):45226–34.

    CAS  PubMed  Google Scholar 

  81. Fernandez F, Rush JS, Toke DA, Han GS, Quinn JE, Carman GM, et al. The CWH8 gene encodes a dolichyl pyrophosphate phosphatase with a luminally oriented active site in the endoplasmic reticulum of Saccharomyces cerevisiae. J. Biol. Chem. 2001;276(44):41455–64.

    CAS  PubMed  Google Scholar 

  82. Volpe JJ, Sakakihara Y, Rust RS. Dolichol kinase and the regulation of dolichyl phosphate levels in develo** brain. Brain Res. 1987;428(2):193–200.

    CAS  PubMed  Google Scholar 

  83. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.

    PubMed  Google Scholar 

  84. William James A, Ravi C, Srinivasan M, Nachiappan V. Crosstalk between protein N-glycosylation and lipid metabolism in Saccharomyces cerevisiae. Sci. Rep. 2019;9(1):14485.

    PubMed  PubMed Central  Google Scholar 

  85. Helander A, Stodberg T, Jaeken J, Matthijs G, Eriksson M, Eggertsen G. Dolichol kinase deficiency (DOLK-CDG) with a purely neurological presentation caused by a novel mutation. Mol. Genet. Metab. 2013;110(3):342–4.

    CAS  PubMed  Google Scholar 

  86. Kranz C, Jungeblut C, Denecke J, Erlekotte A, Sohlbach C, Debus V, et al. A defect in dolichol phosphate biosynthesis causes a new inherited disorder with death in early infancy. Am. J. Hum. Genet. 2007;80(3):433–40.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Fliesler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rao, S.R., Pittler, S.J., Fliesler, S.J. (2023). Perspectives on Retinal Dolichol Metabolism, and Visual Deficits in Dolichol Metabolism-Associated Inherited Disorders. In: Ash, J.D., Pierce, E., Anderson, R.E., Bowes Rickman, C., Hollyfield, J.G., Grimm, C. (eds) Retinal Degenerative Diseases XIX. Advances in Experimental Medicine and Biology, vol 1415. Springer, Cham. https://doi.org/10.1007/978-3-031-27681-1_66

Download citation

Publish with us

Policies and ethics

Navigation