Genotype–Phenotype Association in ABCA4-Associated Retinopathy

  • Conference paper
  • First Online:
Retinal Degenerative Diseases XIX

Abstract

Stargardt disease (STGD1) is the most common inherited retina degeneration. It is caused by biallelic ABCA4 variants, and no treatment is available to date. STGD1 shows marked phenotypic variability, especially regarding the age of onset. The underlying genotype can partially explain this variability. Notably, a subset of ABCA4 variants was previously associated with an earlier disease onset than truncating ABCA4 variants, pointing toward pathogenic mechanisms beyond the loss of gene function in these patients. On the other end of the spectrum, variants such as p.Gly1961Glu were associated with markedly slower extrafoveal disease progression. Given that these drastic differences in phenotype are based on genotype (resulting in important prognostic implications for patients), this chapter reviews previous approaches to genotype–phenotype correlation analyses in STGD1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanany M, Rivolta C, Sharon D. Worldwide carrier frequency and genetic prevalence of autosomal recessive inherited retinal diseases. Proc Natl Acad Sci U S A. 2020 Feb;117(5):2710–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Huang D, Heath Jeffery RC, Aung-Htut MT, McLenachan S, Fletcher S, Wilton SD, et al. Stargardt disease and progress in therapeutic strategies. Ophthalmic Genet. 2021 Aug;1–26.

    Google Scholar 

  3. Cremers FPM, Lee W, Collin RWJ, Allikmets R. Clinical spectrum, genetic complexity and therapeutic approaches for retinal disease caused by ABCA4 mutations. Prog Retin Eye Res. 2020 Nov;79:100861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stargardt K. Über familiäre, progressive Degeneration in der Maculagegend des Auges. Albr von Graefes Arch für Ophthalmol [Internet]. 1909;71(3):534–550. Available from:https://doi.org/10.1007/BF01961301.

  5. Strauss RW, Kong X, Ho A, Jha A, West S, Ip M, et al. Progression of Stargardt disease as determined by fundus autofluorescence over a 12-month period: ProgStar report no. 11. JAMA Ophthalmol. 2019 Aug;137(10):1134–45.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Müller PL, Pfau M, Treis T, Pascual-Camps I, Birtel J, Lindner M, et al. Progression of Abca4-related retinopathy—prognostic value of demographic, functional, genetic, and imaging parameters. Retina. 2020 Jan;1.

    Google Scholar 

  7. Cukras CA, Wong WT, Caruso R, Cunningham D, Zein W, Sieving PA. Centrifugal expansion of fundus autofluorescence patterns in Stargardt disease over time. Arch Ophthalmol. 2012 Feb;130(2):171–9.

    Article  PubMed  Google Scholar 

  8. Cideciyan AV, Swider M, Schwartz SB, Stone EM, Jacobson SG. Predicting progression of ABCA4-associated retinal degenerations based on longitudinal measurements of the leading disease front. Investig Ophthalmol Vis Sci. 2015 Sep;56(10):5946–55.

    Article  CAS  Google Scholar 

  9. Cideciyan AV, Swider M, Aleman TS, Sumaroka A, Schwartz SB, Roman MI, et al. ABCA4-associated retinal degenerations spare structure and function of the human parapapillary retina. Investig Ophthalmol Vis Sci. 2005 Dec;46(12):4739–46.

    Article  Google Scholar 

  10. Lambertus S, van Huet RAC, Bax NM, Hoefsloot LH, Cremers FPM, Boon CJF, et al. Early-onset stargardt disease: phenotypic and genotypic characteristics. Ophthalmology. 2015 Feb;122(2):335–44.

    Article  PubMed  Google Scholar 

  11. van Huet RAC, Bax NM, Westeneng-Van Haaften SC, Muhamad M, Zonneveld-Vrieling MN, Hoefsloot LH, et al. Foveal sparing in Stargardt disease. Invest Ophthalmol Vis Sci. 2014 Oct;55(11):7467–78.

    Article  PubMed  Google Scholar 

  12. Bonilha VL, Rayborn ME, Bell BA, Marino MJ, Fishman GA, Hollyfield JG. Retinal histopathology in eyes from a patient with Stargardt disease caused by compound heterozygous ABCA4 mutations. Ophthalmic Genet. 2016 June;37(2):150–60.

    Article  CAS  PubMed  Google Scholar 

  13. Cideciyan AV, Aleman TS, Swider M, Schwartz SB, Steinberg JD, Brucker AJ, et al. Mutations in ABCA4 result in accumulation of lipofuscin before slowing of the retinoid cycle: a reappraisal of the human disease sequence. Hum Mol Genet. 2004 Mar;13(5):525–34.

    Article  CAS  PubMed  Google Scholar 

  14. Cideciyan AV, Swider M, Aleman TS, Tsybovsky Y, Schwartz SB, Windsor EAMM, et al. ABCA4 disease progression and a proposed strategy for gene therapy. Hum Mol Genet. 2009 Mar;18(5):931–41.

    Article  CAS  PubMed  Google Scholar 

  15. Lois N, Holder GE, Bunce C, Fitzke FW, Bird AC. Phenotypic subtypes of Stargardt macular: dystrophy-fundus flavimaculatus. Arch Ophthalmol [Internet]. 2001 Mar;119(3):359–369. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11231769

  16. Heath Jeffery RC, Thompson JA, Lamey TM, McLaren TL, McAllister IL, Constable IJ, et al. Classifying ABCA4 mutation severity using age-dependent ultra-widefield fundus autofluorescence-derived total lesion size. Retina 2021 Jun;

    Google Scholar 

  17. Sun H, Smallwood PM, Nathans J. Biochemical defects in ABCR protein variants associated with human retinopathies. Nat Genet. 2000 Oct;26(2):242–6.

    Article  CAS  PubMed  Google Scholar 

  18. Shroyer NF, Lewis RA, Yatsenko AN, Wensel TG, Lupski JR. Cosegregation and functional analysis of mutant ABCR (ABCA4) alleles in families that manifest both Stargardt disease and age-related macular degeneration. Hum Mol Genet. 2001 Nov;10(23):2671–8.

    Article  CAS  PubMed  Google Scholar 

  19. Biswas-Fiss EE. Functional analysis of genetic mutations in nucleotide binding domain 2 of the human retina specific ABC transporter. Biochemistry. 2003 Sep;42(36):10683–96.

    Article  CAS  PubMed  Google Scholar 

  20. Wiszniewski W, Zaremba CM, Yatsenko AN, Jamrich M, Wensel TG, Lewis RA, et al. ABCA4 mutations causing mislocalization are found frequently in patients with severe retinal dystrophies. Hum Mol Genet. 2005 Oct;14(19):2769–78.

    Article  CAS  PubMed  Google Scholar 

  21. Sangermano R, Khan M, Cornelis SS, Richelle V, Albert S, Garanto A, et al. ABCA4 midigenes reveal the full splice spectrum of all reported noncanonical splice site variants in Stargardt disease. Genome Res. 2018 Jan;28(1):100–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang N, Tsybovsky Y, Kolesnikov AV, Rozanowska M, Swider M, Schwartz SB, et al. Protein misfolding and the pathogenesis of ABCA4-associated retinal degenerations. Hum Mol Genet. 2015 Jun;24(11):3220–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Weng J, Mata NL, Azarian SM, Tzekov RT, Birch DG, Travis GH. Insights into the function of rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in abcr knockout mice. Cell. 1999;98(1):13–23.

    Article  CAS  PubMed  Google Scholar 

  24. Charbel Issa P, Barnard AR, Singh MS, Carter E, Jiang Z, Radu RA, et al. Fundus autofluorescence in the Abca4(−/−) mouse model of Stargardt disease—correlation with accumulation of A2E, retinal function, and histology. Invest Ophthalmol Vis Sci. 2013 Aug;54(8):5602–12.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Allikmets R, Singh N, Sun H, Shroyer NF, Hutchinson A, Chidambaram A, et al. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet [Internet]. 1997 Mar;15(3):236–246. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9054934

  26. Gerber S, Rozet JM, van de Pol TJ, Hoyng CB, Munnich A, Blankenagel A, et al. Complete exon-intron structure of the retina-specific ATP binding transporter gene (ABCR) allows the identification of novel mutations underlying Stargardt disease. Genomics. 1998 Feb;48(1):139–42.

    Article  CAS  PubMed  Google Scholar 

  27. Nasonkin I, Illing M, Koehler MR, Schmid M, Molday RS, Weber BH. Map** of the rod photoreceptor ABC transporter (ABCR) to 1p21-p22.1 and identification of novel mutations in Stargardt’s disease. Hum Genet. 1998 Jan;102(1):21–6.

    Article  CAS  PubMed  Google Scholar 

  28. Rozet JM, Gerber S, Souied E, Perrault I, Châtelin S, Ghazi I, et al. Spectrum of ABCR gene mutations in autosomal recessive macular dystrophies. Eur J Hum Genet. 1998;6(3):291–5.

    Article  CAS  PubMed  Google Scholar 

  29. Lewis RA, Shroyer NF, Singh N, Allikmets R, Hutchinson A, Li Y, et al. Genotype/phenotype analysis of a photoreceptor-specific ATP-binding cassette transporter gene, ABCR. Stargardt disease Am J Hum Genet. 1999 Feb;64(2):422–34.

    Article  CAS  PubMed  Google Scholar 

  30. Fishman GA, Stone EM, Grover S, Derlacki DJ, Haines HL, Hockey RR. Variation of clinical expression in patients with Stargardt dystrophy and sequence variations in the ABCR gene. Arch Ophthalmol. 1999 Apr;117(4):504–10.

    Article  CAS  PubMed  Google Scholar 

  31. Gerth C, Andrassi-Darida M, Bock M, Preising MN, Weber BHF, Lorenz B. Phenotypes of 16 Stargardt macular dystrophy/fundus flavimaculatus patients with known ABCA4 mutations and evaluation of genotype-phenotype correlation. Graefe’s Arch Clin Exp Ophthalmol = Albr von Graefes Arch fur Klin und Exp Ophthalmol. 2002 Aug;240(8):628–38.

    Article  Google Scholar 

  32. Duncker T, Stein GE, Lee W, Tsang SH, Zernant J, Bearelly S, et al. Quantitative fundus autofluorescence and optical coherence tomography in ABCA4 carriers. Investig Ophthalmol Vis Sci. 2015 Nov;56(12):7274–85.

    Article  CAS  Google Scholar 

  33. Müller PL, Gliem M, McGuinnes M, Birtel J, Holz FG, Charbel IP. Quantitative fundus autofluorescence in ABCA4-related retinopathy -functional relevance and genotype-phenotype correlation. Am J Ophthalmol [Internet]. 2021;222:340–50. Available from: https://www.sciencedirect.com/science/article/pii/S0002939420304797

    Article  PubMed  Google Scholar 

  34. Zernant J, Lee W, Collison FT, Fishman GA, Sergeev YV, Schuerch K, et al. Frequent hypomorphic alleles account for a significant fraction of ABCA4 disease and distinguish it from age-related macular degeneration. J Med Genet. 2017 Jun;54(6):404–12.

    Article  CAS  PubMed  Google Scholar 

  35. Fukui T, Yamamoto S, Nakano K, Tsujikawa M, Morimura H, Nishida K, et al. ABCA4 gene mutations in Japanese patients with Stargardt disease and retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2002 Sep;43(9):2819–24.

    PubMed  Google Scholar 

  36. Tanaka K, Lee W, Zernant J, Schuerch K, Ciccone L, Tsang SH, et al. The rapid-onset Chorioretinopathy phenotype of ABCA4 disease. Ophthalmology. 2018 Jan;125(1):89–99.

    Article  PubMed  Google Scholar 

  37. Bertelsen M, Zernant J, Larsen M, Duno M, Allikmets R, Rosenberg T. Generalized choriocapillaris dystrophy, a distinct phenotype in the spectrum of ABCA4-associated retinopathies. Investig Ophthalmol Vis Sci. 2014 May;55(4):2766–76.

    Article  CAS  Google Scholar 

  38. Fakin A, Robson AG, Chiang JPW, Fu**ami K, Moore AT, Michaelides M, et al. The effect on retinal structure and function of 15 specific ABCA4 mutations: a detailed examination of 82 Hemizygous patients. Investig Ophthalmol Vis Sci. 2016 Nov;57(14):5963–73.

    Article  CAS  Google Scholar 

  39. Khan M, Arno G, Fakin A, Parfitt DA, Dhooge PPA, Albert S, et al. Detailed phenoty** and therapeutic strategies for intronic ABCA4 variants in Stargardt disease. Mol Ther Nucleic Acids. 2020 Sep;21:412–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous predictors in multiple regression: a bad idea. Stat Med. 2006 Jan;25(1):127–41.

    Article  PubMed  Google Scholar 

  41. Bates D, Mächler M, Bolker BM, Walker SC. Fitting linear mixed-effects models using lme4. J Stat Softw [Internet]. 2015 Oct 7;67(1). Available from: https://www.jstatsoft.org/v067/i01

  42. Simonelli F, Testa F, Zernant J, Nesti A, Rossi S, Allikmets R, et al. Genotype-phenotype correlation in Italian families with Stargardt disease. Ophthalmic Res. 2005;37(3):159–67.

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest Statement

The authors have declared that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian P. Brooks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pfau, M. et al. (2023). Genotype–Phenotype Association in ABCA4-Associated Retinopathy. In: Ash, J.D., Pierce, E., Anderson, R.E., Bowes Rickman, C., Hollyfield, J.G., Grimm, C. (eds) Retinal Degenerative Diseases XIX. Advances in Experimental Medicine and Biology, vol 1415. Springer, Cham. https://doi.org/10.1007/978-3-031-27681-1_42

Download citation

Publish with us

Policies and ethics

Navigation