The Role of Microglia in Inherited Retinal Diseases

  • Conference paper
  • First Online:
Retinal Degenerative Diseases XIX

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1415))

  • 1622 Accesses

Abstract

Inherited retinal diseases (IRDs) are a leading cause of irreversible visual loss in the developed world. The primary driver of pathology in IRDs is pathogenic genetic variant. However, there is increasing evidence, from recent studies, for a role of the immune system in disease mechanism, particularly retinal microglia. Microglia are the primary immune cells in the retina and actively contribute to disease pathogenesis when activated locally by phagocytosing photoreceptors, inducing inflammation and signaling infiltration of circulating monocytes. In this article, we discuss the evidence for the contribution of retinal microglia to IRD pathogenesis reported so far using mice model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 319.93
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 379.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 379.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akhmedov NB, Piriev NI, Chang B, Rapoport AL, Hawes NL, Nishina PM, Nusinowitz S, Heckenlively JR, Roderick TH, Kozak CA, Danciger M, Davisson MT, Farber DB. A deletion in a photoreceptor-specific nuclear receptor mRNA causes retinal degeneration in the rd7 mouse. Proc Natl Acad Sci U S A. 2000;97:5551–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Al-Khersan H, Shah KP, Jung SC, Rodriguez A, Madduri RK, Grassi MA. A novel MERTK mutation causing retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol. 2017;255:1613–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Aloisi F. Immune function of microglia. Glia. 2001;36:165–79.

    CAS  PubMed  Google Scholar 

  4. Appelbaum T, Santana E, Aguirre GD. Strong upregulation of inflammatory genes accompanies photoreceptor demise in canine models of retinal degeneration. PLoS One. 2017;12:e0177224.

    PubMed  PubMed Central  Google Scholar 

  5. Aredo B, Zhang K, Chen X, Wang CX-Z, Li T, Ufret-Vincenty RL. Differences in the distribution, phenotype and gene expression of subretinal microglia/macrophages in C57BL/6N (Crb1 rd8/rd8) versus C57BL6/J (Crb1 wt/wt) mice. J Neuroinflammation. 2015a;12:6.

    PubMed  PubMed Central  Google Scholar 

  6. Balkwill FR. The chemokine system and cancer. J Pathol. 2012;226:148–57.

    CAS  PubMed  Google Scholar 

  7. Bowes C, Li T, Danciger M, Baxter LC, Applebury ML, Farber DB. Retinal degeneration in the rd mouse is caused by a defect in the β subunit of rod cGMP-phosphodiesterase. Nature. 1990;347:677.

    CAS  PubMed  Google Scholar 

  8. Chang B, Hawes N, Hurd R, Davisson M, Nusinowitz S, Heckenlively J. Retinal degeneration mutants in the mouse. Vis Res. 2002;42:517–25.

    CAS  PubMed  Google Scholar 

  9. Chang BHJR, Hawes NL, Davisson MT. A new mouse model of retinal dysplasia and degeneration (rd7). Invest Ophthalmol Vis Sci. 1998;39:s880.

    Google Scholar 

  10. Chekuri A, Sahu B, Chavali VRM, Voronchikhina M, Soto-Hermida A, Suk JJ, Alapati AN, Bartsch D-U, Ayala-Ramirez R, Zenteno JC. Long-term effects of gene therapy in a novel mouse model of human MFRP-associated retinopathy. Hum Gene Ther. 2019;30:632–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cheng H, Khan NW, Roger JE, Swaroop A. Excess cones in the retinal degeneration rd7 mouse, caused by the loss of function of orphan nuclear receptor Nr2e3, originate from early-born photoreceptor precursors. Hum Mol Genet. 2011;20:4102–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chiu IM, Morimoto ET, Goodarzi H, Liao JT, O’Keeffe S, Phatnani HP, Muratet M, Carroll MC, Levy S, Tavazoie S, Myers RM, Maniatis T. A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. Cell Rep. 2013;4:385–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fogerty J, Besharse JC. 174delG mutation in mouse MFRP causes photoreceptor degeneration and RPE atrophy. Invest Ophthalmol Vis Sci. 2011;52:7256–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Fogerty J, Besharse JC. Subretinal infiltration of monocyte derived cells and complement misregulation in mice with AMD-like pathology. Adv Exp Med Biol. 2014a;801:355–63.

    PubMed  PubMed Central  Google Scholar 

  15. Fogerty J, Besharse JC. Subretinal infiltration of monocyte derived cells and complement misregulation in mice with AMD-like pathology. In: Retinal degenerative diseases. Springer, New York; 2014b. p. 355–63.

    Google Scholar 

  16. Gosens I, den Hollander AI, Cremers FP, Roepman R. Composition and function of the Crumbs protein complex in the mammalian retina. Exp Eye Res. 2008;86:713–26.

    CAS  PubMed  Google Scholar 

  17. Gupta N, Brown KE, Milam AH. Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration. Exp Eye Res. 2003;76:463–71.

    CAS  PubMed  Google Scholar 

  18. Huang Y, Xu Z, **ong S, Qin G, Sun F, Yang J, Yuan T-F, Zhao L, Wang K, Liang Y-X, Fu L, Wu T, So K-F, Rao Y, Peng B. Dual extra-retinal origins of microglia in the model of retinal microglia repopulation. Cell Discov. 2018;4:9–9.

    PubMed  PubMed Central  Google Scholar 

  19. Jobling AI, Waugh M, Vessey KA, Phipps JA, Trogrlic L, Greferath U, Mills SA, Tan ZL, Ward MM, Fletcher EL. The role of the microglial Cx3cr1 pathway in the postnatal maturation of retinal photoreceptors. J Neurosci. 2018;38:4708–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kameya S, Hawes NL, Chang B, Heckenlively JR, Naggert JK, Nishina PM. Mfrp, a gene encoding a frizzled related protein, is mutated in the mouse retinal degeneration 6. Hum Mol Genet. 2002;11:1879–86.

    CAS  PubMed  Google Scholar 

  21. Kohno H, Koso H, Okano K, Sundermeier TR, Saito S, Watanabe S, Tsuneoka H, Sakai T. Expression pattern of Ccr2 and Cx3cr1 in inherited retinal degeneration. J Neuroinflammation. 2015;12:188.

    PubMed  PubMed Central  Google Scholar 

  22. Li T, Aredo B, Chen X, Zhang K, Ufret-Vincenty R. Change in the distribution and phenotype of subretinal microglia in C57BL/6J and RD8 mutant mice with aging. Invest Ophthalmol Vis Sci. 2014;55:81.

    Google Scholar 

  23. Luhmann UF, Carvalho LS, Holthaus SM, Cowing JA, Greenaway S, Chu CJ, Herrmann P, Smith AJ, Munro PM, Potter P, Bainbridge JW, Ali RR. The severity of retinal pathology in homozygous Crb1rd8/rd8 mice is dependent on additional genetic factors. Hum Mol Genet. 2015;24:128–41.

    CAS  PubMed  Google Scholar 

  24. Mattapallil MJ, Wawrousek EF, Chan CC, Zhao H, Roychoudhury J, Ferguson TA, Caspi RR. The Rd8 mutation of the Crb1 gene is present in vendor lines of C57BL/6N mice and embryonic stem cells, and confounds ocular induced mutant phenotypes. Invest Ophthalmol Vis Sci. 2012;53:2921–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. O’Koren EG, Mathew R, Saban DR. Fate map** reveals that microglia and recruited monocyte-derived macrophages are definitively distinguishable by phenotype in the retina. Sci Rep. 2016;6:20636.

    PubMed  PubMed Central  Google Scholar 

  26. O’Koren EG, Yu C, Klingeborn M, Wong AYW, Prigge CL, Mathew R, Kalnitsky J, Msallam RA, Silvin A, Kay JN, Bowes Rickman C, Arshavsky VY, Ginhoux F, Merad M, Saban DR. Microglial function is distinct in different anatomical locations during retinal homeostasis and degeneration. Immunity. 2019;50:723–737.e727.

    PubMed  PubMed Central  Google Scholar 

  27. O’Koren EG, Yu C, Klingeborn M, Wong AY, Prigge CL, Mathew R, Kalnitsky J, Msallam RA, Silvin A, Kay JN. Microglial function is distinct in different anatomical locations during retinal homeostasis and degeneration. Immunity. 2019;50(723–737):e727.

    Google Scholar 

  28. Pang J, Chang B, Hawes NL, Hurd RE, Davisson MT, Li J, Noorwez SM, Malhotra R, McDowell JH, Kaushal S. Retinal degeneration 12 (rd12): a new, spontaneously arising mouse model for human Leber congenital amaurosis (LCA). Mol Vis. 2005a;11:152–62.

    CAS  PubMed  Google Scholar 

  29. Pang JJ, Chang B, Hawes NL, Hurd RE, Davisson MT, Li J, Noorwez SM, Malhotra R, McDowell JH, Kaushal S, Hauswirth WW, Nusinowitz S, Thompson DA, Heckenlively JR. Retinal degeneration 12 (rd12): a new, spontaneously arising mouse model for human Leber congenital amaurosis (LCA). Mol Vis. 2005b;11:152–62.

    CAS  PubMed  Google Scholar 

  30. Peng B, **ao J, Wang K, So KF, Tipoe GL, Lin B. Suppression of microglial activation is neuroprotective in a mouse model of human retinitis pigmentosa. J Neurosci. 2014;34:8139–50.

    PubMed  PubMed Central  Google Scholar 

  31. Pittler SJ, Baehr W. Identification of a nonsense mutation in the rod photoreceptor cGMP phosphodiesterase beta-subunit gene of the rd mouse. Proc Natl Acad Sci U S A. 1991;88:8322–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rashid K, Akhtar-Schaefer I, Langmann T. Microglia in retinal degeneration. Front Immunol. 2019; 10: 1975.

    Google Scholar 

  33. Ronning KE, Karlen SJ, Miller EB, Burns ME. Molecular profiling of resident and infiltrating mononuclear phagocytes during rapid adult retinal degeneration using single-cell RNA sequencing. Sci Rep. 2019;9:4858.

    PubMed  PubMed Central  Google Scholar 

  34. Santos AM, Calvente R, Tassi M, Carrasco MC, Martin-Oliva D, Marin-Teva JL, Navascues J, Cuadros MA. Embryonic and postnatal development of microglial cells in the mouse retina. J Comp Neurol. 2008;506:224–39.

    PubMed  Google Scholar 

  35. Sasahara M, Otani A, Oishi A, Kojima H, Yodoi Y, Kameda T, Nakamura H, Yoshimura N. Activation of bone marrow-derived microglia promotes photoreceptor survival in inherited retinal degeneration. Am J Pathol. 2008;172:1693–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Shivaram AM. Isolation and characterization of retinal microglia in Royal College of Surgeons Rat. 2003.

    Google Scholar 

  37. Wang N-K, Lai C-C, Liu C-H, Yeh L-K, Chou CL, Kong J, Nagasaki T, Tsang SH, Chien C-L. Origin of fundus hyperautofluorescent spots and their role in retinal degeneration in a mouse model of Goldmann-Favre syndrome. Dis Model Mech. 2013;6:1113–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang NK, Fine HF, Chang S, Chou CL, Cella W, Tosi J, Lin CS, Nagasaki T, Tsang SH. Cellular origin of fundus autofluorescence in patients and mice with a defective NR2E3 gene. Br J Ophthalmol. 2009;93:1234–40.

    PubMed  Google Scholar 

  39. Wang T, Reingruber J, Woodruff ML, Majumder A, Camarena A, Artemyev NO, Fain GL, Chen J. The PDE6 mutation in the rd10 retinal degeneration mouse model causes protein mislocalization and instability and promotes cell death through increased ion influx. J Biol Chem. 2018;293:15332–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang X, Zhao L, Zhang J, Fariss RN, Ma W, Kretschmer F, Wang M, Qian H, Badea TC, Diamond JS, Gan W-B, Roger JE, Wong WT. Requirement for microglia for the maintenance of synaptic function and integrity in the mature retina. J Neurosci. 2016;36:2827–42.

    PubMed  PubMed Central  Google Scholar 

  41. Zabel MK, Zhao L, Zhang Y, Gonzalez SR, Ma W, Wang X, Fariss RN, Wong WT. Microglial phagocytosis and activation underlying photoreceptor degeneration is regulated by CX3CL1-CX3CR1 signaling in a mouse model of retinitis pigmentosa. Glia. 2016;64:1479–91.

    PubMed  PubMed Central  Google Scholar 

  42. Zeng H, Ding M, Chen X-X, Lu Q. Microglial NADPH oxidase activation mediates rod cell death in the retinal degeneration in rd mice. Neuroscience. 2014;275:54–61.

    CAS  PubMed  Google Scholar 

  43. Zhao L, Zabel MK, Wang X, Ma W, Shah P, Fariss RN, Qian H, Parkhurst CN, Gan WB, Wong WT. Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration. EMBO Mol Med. 2015a;7:1179–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhou T, Huang Z, Sun X, Zhu X, Zhou L, Li M, Cheng B, Liu X, He C. Microglia polarization with M1/M2 phenotype changes in rd1 mouse model of retinal degeneration. Front Neuroanat. 2017;11:77.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

S.B. is supported by the Foundation Fighting Blindness Career Development Award. This artwork was prepared using BioRender.com.

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyamanga Borooah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumari, A., Borooah, S. (2023). The Role of Microglia in Inherited Retinal Diseases. In: Ash, J.D., Pierce, E., Anderson, R.E., Bowes Rickman, C., Hollyfield, J.G., Grimm, C. (eds) Retinal Degenerative Diseases XIX. Advances in Experimental Medicine and Biology, vol 1415. Springer, Cham. https://doi.org/10.1007/978-3-031-27681-1_29

Download citation

Publish with us

Policies and ethics

Navigation