AAV Serotypes and Their Suitability for Retinal Gene Therapy

  • Conference paper
  • First Online:
Retinal Degenerative Diseases XIX

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1415))

Abstract

Throughout the last 25 years, exceptional progress in retinal gene therapy was achieved. The major breakthrough was realized in 2017 when the FDA approved the adeno-associated virus (AAV)-based gene therapy for treatment of the monogenetic disorder Leber congenital amaurosis type 2 (LCA2). Since then, many therapies for inherited retinal diseases (IRD) reached phase I/II clinical trials, targeting diseases like achromatopsia, choroideremia, retinitis pigmentosa, Stargardt disease, and many more (reviewed in (Trapani and Auricchio, Trends Mol Med 24:669–681, 2018)). Advanced vector and capsid design technologies as well as improved gene transfer and gene editing methods may lead to refined therapies for various eye diseases. Many research departments worldwide focus on optimizing transgene expression by designing novel AAV serotypes. Besides serotype tropism, the method of injection (intravitreal, subretinal, or suprachoroidal) (Han et al., Hum Gene Ther 31:1288–1299, 2020) defines the efficiency outcome along with the use of tissue-specific promotors which play a critical role for cell targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAP:

Assembly-activating protein

AAV:

Adeno-associated virus

c-Met:

Hepatocyte growth factor receptor

FGFR1:

Fibroblast growth factor receptor 1

HSPG:

Heparan sulfate proteoglycan

IRD:

Inherited retinal diseases

ITR:

Inverted terminal repeats

LCA2:

Leber congenital amaurosis type 2

rAAV:

Recombinant AAV

RPE:

Retinal pigment epithelium

References

  1. Ali RR, Reichel MB, Thrasher AJ, Levinsky RJ, Kinnon C, Kanuga N, Hunt DM, Bhattacharya SS. Gene transfer into the mouse retina mediated by an adeno-associated viral vector. Hum Mol Genet. 1996;5:591–4.

    Article  CAS  PubMed  Google Scholar 

  2. Asokan A, Hamra JB, Govindasamy L, Agbandje-McKenna M, Samulski RJ. Adeno-associated virus type 2 contains an integrin alpha5beta1 binding domain essential for viral cell entry. J Virol. 2006;80:8961–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Auricchio A. Pseudotyped AAV vectors for constitutive and regulated gene expression in the eye. Vis Res. 2003;43:913–8.

    Article  CAS  PubMed  Google Scholar 

  4. Bohenzky RA, Lefebvre RB, Berns KI. Sequence and symmetry requirements within the internal palindromic sequences of the adeno-associated virus terminal repeat. Virology. 1988;166:316–27.

    Article  CAS  PubMed  Google Scholar 

  5. Dalkara D, Kolstad KD, Caporale N, Visel M, Klimczak RR, Schaffer DV, Flannery JG. Inner limiting membrane barriers to AAV-mediated retinal transduction from the vitreous. Mol Ther. 2009;17:2096–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Deyle DR, Russell DW. Adeno-associated virus vector integration. Curr Opin Mol Ther. 2009;11:442–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Drouin LM, Agbandje-McKenna M. Adeno-associated virus structural biology as a tool in vector development. Futur Virol. 2013;8:1183–99.

    Article  CAS  Google Scholar 

  8. Fitzpatrick Z, Leborgne C, Barbon E, Masat E, Ronzitti G, van Wittenberghe L, Vignaud A, Collaud F, Charles S, Simon Sola M, Jouen F, Boyer O, Mingozzi F. Influence of pre-existing anti-capsid neutralizing and binding antibodies on AAV vector transduction. Mol Ther Methods Clin Dev. 2018;9:119–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Han IC, Cheng JL, Burnight ER, Ralston CL, Fick JL, Thomsen GJ, Tovar EF, Russell SR, Sohn EH, Mullins RF, Stone EM, Tucker BA, Wiley LA. Retinal tropism and transduction of adeno-associated virus varies by serotype and route of delivery (intravitreal, subretinal, or suprachoroidal) in rats. Hum Gene Ther. 2020;31:1288–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kashiwakura Y, Tamayose K, Iwabuchi K, Hirai Y, Shimada T, Matsumoto K, Nakamura T, Watanabe M, Oshimi K, Daida H. Hepatocyte growth factor receptor is a coreceptor for adeno-associated virus type 2 infection. J Virol. 2005;79:609–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McCarty DM, Young SM, Samulski RJ. Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu Rev Genet. 2004;38:819–45.

    Article  CAS  PubMed  Google Scholar 

  12. Naumer M, Sonntag F, Schmidt K, Nieto K, Panke C, Davey NE, Popa-Wagner R, Kleinschmidt JA. Properties of the adeno-associated virus assembly-activating protein. J Virol. 2012;86:13038–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Petrs-Silva H, Dinculescu A, Li Q, Min S-H, Chiodo V, Pang J, Zhong L, Zolotukhin S, Srivastava A, Lewin AS, Hauswirth WW. High-efficiency transduction of the mouse retina by tyrosine-mutant AAV serotype vectors. Mol Ther. 2009;17:463–71.

    Article  CAS  PubMed  Google Scholar 

  14. Qing K, Mah C, Hansen J, Zhou S, Dwarki V, Srivastava A. Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nat Med. 1999;5:71–7.

    Article  CAS  PubMed  Google Scholar 

  15. Samulski RJ, Muzyczka N. AAV-mediated gene therapy for research and therapeutic purposes. Annu Rev Virol. 2014;1:427–51.

    Article  PubMed  Google Scholar 

  16. Sonntag F, Schmidt K, Kleinschmidt JA. A viral assembly factor promotes AAV2 capsid formation in the nucleolus. Proc Natl Acad Sci. 2010;107:10220–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Summerford C, Samulski RJ. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol. 1998;72:1438–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Summerford C, Bartlett JS, Samulski RJ. AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nat Med. 1999;5:78–82.

    Article  CAS  PubMed  Google Scholar 

  19. Trapani I, Auricchio A. Seeing the light after 25 years of retinal gene therapy. Trends Mol Med. 2018;24:669–81.

    Article  PubMed  Google Scholar 

  20. Weitzman MD, Linden RM. Adeno-associated virus biology. In: Snyder RO, Moullier P, editors. Adeno-associated virus. Methods and protocols. New York: Humana Press; 2011. p. 1–23.

    Google Scholar 

  21. Zhou X, Muzyczka N. In vitro packaging of adeno-associated virus DNA. J Virol. 1998;72:3241–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn J. A. Ebner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ebner, L.J.A., Grimm, C. (2023). AAV Serotypes and Their Suitability for Retinal Gene Therapy. In: Ash, J.D., Pierce, E., Anderson, R.E., Bowes Rickman, C., Hollyfield, J.G., Grimm, C. (eds) Retinal Degenerative Diseases XIX. Advances in Experimental Medicine and Biology, vol 1415. Springer, Cham. https://doi.org/10.1007/978-3-031-27681-1_20

Download citation

Publish with us

Policies and ethics

Navigation