Modeling and Optimization of Solar Air Collector Using GRA

  • Chapter
  • First Online:
Evolutionary Methods Based Modeling and Analysis of Solar Thermal Systems

Part of the book series: Mechanical Engineering Series ((MES))

  • 75 Accesses

Abstract

A flat plate solar air collector (SAC) is the subject of this study, which uses grey relational analysis (GRA) to determine the ideal parameters affecting energy and exergy efficiency. SAC’s energy and exergy efficiencies are impacted by various mass flow rates, tilt angles, solar radiation, and inlet temperatures. According to analysis, the ideal configuration for a SAC has the following input parameters: mass flow rate of 0.0156 kg/s, tilt angle of 45°, solar radiation of 764.48 W/m2, and inlet temperature of 21.72 °C, with corresponding output parameters of 24.61% energy efficiency, 6.43% exergy efficiency, 22.1 °C temperature rise, and 94.1 Pa pressure drop. Findings of confirmation experiment demonstrated that data acquired with the confirmatory test and the experimental data are consistent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bhagoria, J. L., Saini, J. S., & Solanki, S. C. (2002). Heat transfer coefficient and friction factor correlations for rectangular solar air heater duct having transverse wedge shaped rib roughness on the absorber plate. Renewable Energy, 25(3), 341–369.

    Article  Google Scholar 

  2. Nowzari, R., Mirzaei, N., & Aldabbagh, L. B. Y. (2015). Finding the best configuration for a solar air heater by design and analysis of experiment. Energy Conversion and Management, 100, 131–137.

    Article  Google Scholar 

  3. Diao, Y., Kato, S., & Hiyama, K. (2011, December). Development of an optimal design aid system based on building information modeling. Building Simulation, 4(4), 315–320.

    Article  Google Scholar 

  4. Fontanella, G., Basciotti, D., Dubisch, F., Judex, F., Preisler, A., Hettfleisch, C., Vukovic, V., & Selke, T. (2012, September). Calibration and validation of a solar thermal system model in Modelica. Building Simulation, 5(3), 293–300.

    Article  Google Scholar 

  5. Jairaj, K. S., Singh, S. P., & Srikant, K. (2009). A review of solar dryers developed for grape drying. Solar Energy, 83(9), 1698–1712.

    Article  Google Scholar 

  6. Chabane, F., Moummi, N., Benramache, S., Bensahal, D., Belahssen, O., & Lemmadi, Z. (2010). Thermal performance optimization of a flat plate solar air heater using genetic algorithm. Applied Energy, 87(5), 1793–1799.

    Article  Google Scholar 

  7. Ho, C. D., Hsiao, C. F., Chang, H., Tien, Y. E., & Hong, Z. S. (2017). Efficiency of recycling double-pass V-corrugated solar air collectors. Energies, 10(7), 875.

    Article  Google Scholar 

  8. Zheng, W., Zhang, H., You, S., & Fu, Y. (2017). Experimental investigation of the transpired solar air collectors and metal corrugated packing solar air collectors. Energies, 10(3), 302.

    Article  Google Scholar 

  9. Yeh, H. M., & Ho, C. D. (2012). Collector efficiency in downward-type double-pass solar air heaters with attached fins and operated by external recycle. Energies, 5(8), 2692–2707.

    Article  Google Scholar 

  10. Lin, W., Gao, W., & Liu, T. (2006). A parametric study on the thermal performance of cross-corrugated solar air collectors. Applied Thermal Engineering, 26(10), 1043–1053.

    Article  Google Scholar 

  11. Yang, M., Yang, X., Li, X., Wang, Z., & Wang, P. (2014). Design and optimization of a solar air heater with offset strip fin absorber plate. Applied Energy, 113, 1349–1362.

    Article  Google Scholar 

  12. El-Khawajah, M. F., Aldabbagh, L. B. Y., & Egelioglu, F. (2011). The effect of using transverse fins on a double pass flow solar air heater using wire mesh as an absorber. Solar Energy, 85(7), 1479–1487.

    Article  Google Scholar 

  13. Gholap, A. K., & Khan, J. A. (2007). Design and multi-objective optimization of heat exchangers for refrigerators. Applied Energy, 84(12), 1226–1239.

    Article  Google Scholar 

  14. Hedayatizadeh, M., Sarhaddi, F., Safavinejad, A., Ranjbar, F., & Chaji, H. (2016). Exergy loss-based efficiency optimization of a double-pass/glazed v-corrugated plate solar air heater. Energy, 94, 799–810.

    Article  Google Scholar 

  15. Wang, J. J., **g, Y. Y., Zhang, C. F., & Zhao, J. H. (2009). Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Reviews, 13(9), 2263–2278.

    Article  Google Scholar 

  16. Stein, E. W. (2013). A comprehensive multi-criteria model to rank electric energy production technologies. Renewable and Sustainable Energy Reviews, 22, 640–654.

    Article  Google Scholar 

  17. Mulliner, E., Malys, N., & Maliene, V. (2016). Comparative analysis of MCDM methods for the assessment of sustainable housing affordability. Omega, 59, 146–156.

    Article  Google Scholar 

  18. Acır, A., Canlı, M. E., Ata, İ., & Çakıroğlu, R. (2017). Parametric optimization of energy and exergy analyses of a novel solar air heater with grey relational analysis. Applied Thermal Engineering, 122, 330–338.

    Article  Google Scholar 

  19. Aghaie, A. Z., Rahimi, A. B., & Akbarzadeh, A. (2015). A general optimized geometry of angled ribs for enhancing the thermo-hydraulic behavior of a solar air heater channel–A Taguchi approach. Renewable Energy, 83, 47–54.

    Article  Google Scholar 

  20. Gunes, S., Senyigit, E., Karakaya, E., & Ozceyhan, V. (2019). Optimization of heat transfer and pressure drop in a tube with loose-fit perforated twisted tapes by Taguchi method and grey relational analysis. Journal of Thermal Analysis and Calorimetry, 136(4), 1795–1806.

    Article  Google Scholar 

  21. Chauhan, R., Singh, T., Thakur, N. S., & Patnaik, A. (2016). Optimization of parameters in solar thermal collector provided with im**ing air jets based upon preference selection index method. Renewable Energy, 99, 118–126.

    Article  Google Scholar 

  22. Mishra, P. K., Nadda, R., Kumar, R., Rana, A., Sethi, M., & Ekileski, A. (2018). Optimization of multiple arcs protrusion obstacle parameters using AHP-TOPSIS approach in an im**ement jet solar air passage. Heat and Mass Transfer, 54(12), 3797–3808.

    Article  Google Scholar 

  23. Sharma, A., Chauhan, R., Singh, T., Kumar, A., Kumar, R., & Sethi, M. (2017). Optimizing discrete V obstacle parameters using a novel entropy-VIKOR approach in a solar air flow channel. Renewable Energy, 106, 310–320.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, B., Jagadish (2023). Modeling and Optimization of Solar Air Collector Using GRA. In: Das, B., Jagadish (eds) Evolutionary Methods Based Modeling and Analysis of Solar Thermal Systems. Mechanical Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-031-27635-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27635-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27634-7

  • Online ISBN: 978-3-031-27635-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation