The Octatope Abstract Domain for Verification of Neural Networks

  • Conference paper
  • First Online:
Formal Methods (FM 2023)

Abstract

Efficient verification algorithms for neural networks often depend on various abstract domains such as intervals, zonotopes, and linear star sets. The choice of the abstract domain presents an expressiveness vs. scalability trade-off: simpler domains are less precise but yield faster algorithms. This paper investigates the octatope abstract domain in the context of neural net verification. Octatopes are affine transformations of n-dimensional octagons—sets of unit-two-variable-per-inequality (utvpi) constraints. Octatopes generalize the idea of zonotopes which can be viewed as an affine transformation of a box. On the other hand, octatopes can be considered as a restriction of linear star set, which are affine transformations of arbitrary \(\mathcal {H}\)-Polytopes. This distinction places octatopes firmly between zonotopes and star sets in their expressive power, but what about the efficiency of decision procedures?

An important analysis problem for neural networks is the exact range computation problem that asks to compute the exact set of possible outputs given a set of possible inputs. For this, three computational procedures are needed: 1) optimization of a linear cost function; 2) affine map**; and 3) over-approximating the intersection with a half-space. While zonotopes allow an efficient solution for these approaches, star sets solves these procedures via linear programming. We show that these operations are faster for octatopes than the more expressive linear star sets. For octatopes, we reduce these problems to min-cost flow problems, which can be solved in strongly polynomial time using the Out-of-Kilter algorithm. Evaluating exact range computation on several ACAS Xu neural network benchmarks, we find that octatopes show promise as a practical abstract domain for neural network verification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms and Applications. Prentice Hall (1993)

    Google Scholar 

  2. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall (1993)

    Google Scholar 

  3. Akintunde, M., Lomuscio, A., Maganti, L., Pirovano, E.: Reachability analysis for neural agent-environment systems. In: Sixteenth International Conference on Principles of Knowledge Representation and Reasoning (2018)

    Google Scholar 

  4. Aws Albarghouthi: Introduction to Neural Network Verification (2021). http://verifieddeeplearning.com

  5. Bak, S.: nnenum: verification of ReLU neural networks with optimized abstraction refinement. In: Dutle, A., Moscato, M.M., Titolo, L., Muñoz, C.A., Perez, I. (eds.) NFM 2021. LNCS, vol. 12673, pp. 19–36. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76384-8_2

    Chapter  Google Scholar 

  6. Bak, S., Liu, C., Johnson, T.: The second international verification of neural networks competition (VNN-COMP 2021): summary and results. ar**v preprint ar**v:2109.00498 (2021)

  7. Bak, S., Tran, H.-D., Hobbs, K., Johnson, T.T.: Improved geometric path enumeration for verifying ReLU neural networks. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12224, pp. 66–96. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8_4

    Chapter  Google Scholar 

  8. Bazaraa, M.S., Jarvis, J.J., Sherali, H.D.: Linear Programming and Network Flows. Wiley, Hoboken (2008)

    MATH  Google Scholar 

  9. Behrmann, G., et al.: UPPAAL 4.0. In: Third International Conference on the Quantitative Evaluation of Systems (QEST 2006), 11–14 September 2006, Riverside, California, USA, pp. 125–126. IEEE Computer Society (2006)

    Google Scholar 

  10. Cohen, M.B., Lee, Y.T., Song, Z.: Solving linear programs in the current matrix multiplication time. J. ACM 68(1), 1–39 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pp. 238–252 (1977)

    Google Scholar 

  12. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24

    Chapter  Google Scholar 

  13. Duggirala, P.S., Viswanathan, M.: Parsimonious, simulation based verification of linear systems. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 477–494. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4_26

    Chapter  MATH  Google Scholar 

  14. Friedmann, O., Hansen, T.D., Zwick, U.: Subexponential lower bounds for randomized pivoting rules for the simplex algorithm. In: Symposium on Theory of Computing (STOC 2011), pp. 283–292, ACM, New York (2011)

    Google Scholar 

  15. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev, M.: AI2: safety and robustness certification of neural networks with abstract interpretation. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 3–18. IEEE (2018)

    Google Scholar 

  16. Ghorbal, K., Goubault, E., Putot, S.: The zonotope abstract domain Taylor1+. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 627–633. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4_47

    Chapter  Google Scholar 

  17. Goldberg, A.V., Tarjan, R.E.: Finding minimum-cost circulations by canceling negative cycles. J. ACM 36(4), 873–886 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Henriksen, P., Lomuscio, A.: Efficient neural network verification via adaptive refinement and adversarial search. In: ECAI 2020, pp. 2513–2520. IOS Press (2020)

    Google Scholar 

  19. Henriksen, P., Lomuscio, A.: DEEPSPLIT: an efficient splitting method for neural network verification via indirect effect analysis. In: Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI21) (2021). To appear

    Google Scholar 

  20. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_5

    Chapter  Google Scholar 

  21. Katz, G., et al.: The Marabou framework for verification and analysis of deep neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_26

    Chapter  Google Scholar 

  22. Khachiyan, L.G.: A polynomial time algorithm for linear programming. Dokl. Akad. Nauk SSSR 244(5), 1093–1096 (1979). English translation in Soviet Math. Dokl. 20, 191–194

    MathSciNet  MATH  Google Scholar 

  23. Klee, F., Minty, G.J.: How good is the simplex algorithm? Inequalities III, 159–175 (1972)

    MathSciNet  MATH  Google Scholar 

  24. Lahiri, S.K., Musuvathi, M.: An efficient decision procedure for UTVPI constraints. In: Gramlich, B. (ed.) FroCoS 2005. LNCS (LNAI), vol. 3717, pp. 168–183. Springer, Heidelberg (2005). https://doi.org/10.1007/11559306_9

    Chapter  Google Scholar 

  25. Liu, C., Arnon, T., Lazarus, C., Strong, C., Barrett, C., Kochenderfer, M.J.: Algorithms for verifying deep neural networks. Found. Trends Optim. 4(3–4), 244–404 (2021)

    Article  Google Scholar 

  26. Manzanas Lopez, D., Johnson, T., Tran, H.D., Bak, S., Chen, X., Hobbs, K.L.: Verification of neural network compression of ACAS Xu lookup tables with star set reachability. In: AIAA Scitech 2021 Forum, p. 0995 (2021)

    Google Scholar 

  27. Miné, A.: The octagon abstract domain. High.-Order Symb. Comput. 19(1), 31–100 (2006)

    Article  MATH  Google Scholar 

  28. Orlin, J.B.: A polynomial time primal network simplex algorithm for minimum cost flows. Math. Program. 78, 109–129 (1997). https://doi.org/10.1007/BF02614365

    Article  MathSciNet  MATH  Google Scholar 

  29. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.: Fast and effective robustness certification. NeurIPS 1(4), 6 (2018)

    Google Scholar 

  30. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying neural networks. Proc. ACM Program. Lang. 3(POPL), 1–30 (2019)

    Article  Google Scholar 

  31. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn. MIT Press (2018)

    Google Scholar 

  32. Tjeng, V., **ao, K., Tedrake, R.: Evaluating robustness of neural networks with mixed integer programming. In: International Conference on Learning Representations (2018)

    Google Scholar 

  33. Tran, H.-D., Bak, S., **ang, W., Johnson, T.T.: Verification of deep convolutional neural networks using ImageStars. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12224, pp. 18–42. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8_2

    Chapter  MATH  Google Scholar 

  34. Tran, H.D., Cai, F., Diego, M.L., Musau, P., Johnson, T.T., Koutsoukos, X.: Safety verification of cyber-physical systems with reinforcement learning control. ACM Trans. Embed. Comput. Syst. 18(5s), 1–22 (2019)

    Article  Google Scholar 

  35. Tran, H.-D., et al.: Star-based reachability analysis of deep neural networks. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp. 670–686. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30942-8_39

    Chapter  Google Scholar 

  36. Tran, H.-D., et al.: Robustness verification of semantic segmentation neural networks using relaxed reachability. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 263–286. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81685-8_12

    Chapter  Google Scholar 

  37. Tran, H.-D., et al.: NNV: the neural network verification tool for deep neural networks and learning-enabled cyber-physical systems. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12224, pp. 3–17. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8_1

    Chapter  Google Scholar 

  38. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis of neural networks. Adv. Neural Inf. Process. Syst. 31 (2018)

    Google Scholar 

  39. Wang, S., et al.: Beta-crown: efficient bound propagation with per-neuron split constraints for neural network robustness verification. Adv. Neural. Inf. Process. Syst. 34, 29909–29921 (2021)

    Google Scholar 

Download references

Acknowledgment

This material is based upon work supported by the Air Force Office of Scientific Research and the Office of Naval Research under award numbers FA9550-19-1-0288, FA9550-21-1-0121, FA9550-22-1-0450, FA9550-22-1-0029 and N00014-22-1-2156. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Air Force or the United States Navy. This research was supported in part by the Air Force Research Laboratory Information Directorate, through the Air Force Office of Scientific Research Summer Faculty Fellowship Program, Contract Numbers FA8750-15-3-6003, FA9550-15-0001 and FA9550-20-F-0005.

This work is also supported by the National Science Foundation (NSF) grant CCF-2009022 and by NSF CAREER award CCF-2146563.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh Trivedi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bak, S., Dohmen, T., Subramani, K., Trivedi, A., Velasquez, A., Wojciechowski, P. (2023). The Octatope Abstract Domain for Verification of Neural Networks. In: Chechik, M., Katoen, JP., Leucker, M. (eds) Formal Methods. FM 2023. Lecture Notes in Computer Science, vol 14000. Springer, Cham. https://doi.org/10.1007/978-3-031-27481-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27481-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27480-0

  • Online ISBN: 978-3-031-27481-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation