Symmetry and Generalized Intermittency in the Lorenz Model

  • Conference paper
  • First Online:
15th Chaotic Modeling and Simulation International Conference (CHAOS 2022)

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

Included in the following conference series:

Abstract

The “classical” system of Lorentz equations is considered. The transition “a chaotic attractor of one type—a chaotic attractor of another type” according to the scenario of generalized intermittency is found. It is shown that such a scenario is realized for a pair of simultaneously existing symmetric chaotic attractors. The change in the main characteristics of attractors, which occurs when the scenario of generalized intermittency is implemented, is analyzed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.J. Feigenbaum, Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19(1), 25–52 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  2. M.J. Feigenbaum, The universal metric properties of nonlinear transformations. J. Stat. Phys. 21(6), 669–706 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Manneville, Y. Pomeau, Different ways to turbulence in dissipative dynamical systems. Physica D: Nonlinear Phenom. 1(2), 219–226 (1980)

    Article  MathSciNet  Google Scholar 

  4. Y. Pomeau, P. Manneville, Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 74(2), 189–197 (1980)

    Article  MathSciNet  Google Scholar 

  5. V. Afraimovich, S.B. Hsu, Lectures on Chaotic Dynamical Systems (International Press, Sommerville, 2003)

    Book  MATH  Google Scholar 

  6. S.P. Kouznetsov, Dynamic Chaos (Physmatlit, Moscow, 2006)

    Google Scholar 

  7. T.S. Krasnopolskaya, A.Yu. Shvets, Dynamical chaos for a limited power supply for fluid oscillations in cylindrical tanks. J. Sound Vibr. 322(3), 532–553 (2009)

    Google Scholar 

  8. A.Yu. Shvets, V.A. Sirenko, Scenarios of transitions to hyperchaos in nonideal oscillating systems. J. Math. Sci. 243(2), 338–346 (2019)

    Google Scholar 

  9. A. Shvets, Overview of scenarios of transition to chaos in nonideal dynamic systems, in Springer Proceedings in Complexity (Springer, Cham, 2021), pp. 853–864

    Google Scholar 

  10. A. Sommerfeld, Beitrage zum dynamischen Ausbau der Festigkeitslehre. Phys. Z. 3, 266–271 (1902)

    MATH  Google Scholar 

  11. V.O. Kononenko, Vibrating System with a Limited Power-Supply (Iliffe, London, 1969)

    Google Scholar 

  12. K.V. Frolov, T.S. Krasnopolskaya, Sommerfeld effect in systems without internal dam**. Sov. Appl. Mech. 23(12), 1122–1126 (1987)

    Article  MATH  Google Scholar 

  13. T.S. Krasnopolskaya, Acoustic chaos caused by the Sommerfeld effect. J. Fluids Struct. 8(7), 803–815 (1994)

    Article  Google Scholar 

  14. J.M. Balthazar, J.L. Palacios Felix et al., Nonlinear interactions in a piezoceramic bar transducer powered by a vacuum tube generated by a nonideal source. J. Comput. Nonlinear Dyn. 4, 1–7, 011013 (2009)

    Google Scholar 

  15. A. Shvets, S. Donetskyi, Transition to deterministic chaos in some electroelastic systems, in Springer Proceedings in Complexity (Springer, Cham, 2019), pp. 257–264

    Google Scholar 

  16. E.N. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  17. B.R. Hunt, T.Y. Li, J.A. Kennedy, H.E. Nusse, The Theory of Chaotic Attractors (Springer, New York, NY, 2004)

    Book  MATH  Google Scholar 

  18. T.S. Krasnopol’skaya, A.Yu. Shvets, Chaotic oscillations of a spherical pendulum as an example of interaction with energy source. Int. Appl. Mech. 28(10), 669–674 (1992)

    Google Scholar 

  19. A.Yu. Shvets, T.S. Krasnopolskaya, Hyperchaos in piezoceramic systems with limited power supply. Solid Mech. Appl. 6, 313–322 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr Shvets .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shvets, A. (2023). Symmetry and Generalized Intermittency in the Lorenz Model. In: Skiadas, C.H., Dimotikalis, Y. (eds) 15th Chaotic Modeling and Simulation International Conference. CHAOS 2022. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-031-27082-6_23

Download citation

Publish with us

Policies and ethics

Navigation