An Introduction

  • Chapter
  • First Online:
Metal Phosphates and Phosphonates

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 326 Accesses

Abstract

The type of inorganic-organic hybrid polymeric material formed by the coordination of phosphonate ligands to metal ions, resulting in multi-dimensional extended assemblies is metal phosphonates (MPs). The discipline of MPs chemistry has developed progressively over the last few decades, fueled by interest in applications in a wide range of fields. Synthetic technologies of MPs are lacking on the way to domestic, more efficient alternatives. For the characterization, the advancement of electron diffraction as an instrument for crystal structure determination and the use of in situ characterization techniques have allowed for a better understanding of reaction pathways. Metal phosphonates have been discovered to be appropriate materials for a wide range of applications. This chapter continues to concentrate on advanced emerging applications of MPs in bio-ceramics, electrochemical energy devices, fuel cells, state-of-the-art hydrogen evolution rate (HER), oxygen evolution rate (OER), and water splitting catalysts. The remaining eighteen chapters in the book demonstrate the vast expansion and diversity of metal phosphonate chemistry research briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shivhare, A., Kumara, A., Srivastava, R.: Metal phosphate catalysts to upgrade ligno-cellulose biomass into value-added chemicals and biofuels. Green Chem. 23, 3818–3841 (2021)

    Article  CAS  Google Scholar 

  2. Cheng, Q., Zhao, X., Yang, G., Mao, L., Liao, F., Chen, F., He, P., Pan, D., Chen, S.: Recent advances of metal phosphates-based electrodes for high-performance metal ion batteries. Energy Storage Mater. 41, 842–882 (2021)

    Article  Google Scholar 

  3. Taddei, M., Costantino, F.: Metal phosphonates and phosphinates. Crystals 9, 454 (2019)

    Article  CAS  Google Scholar 

  4. Alberti, G., Costantino, U., Allulli, S., Tomassini, N.: Crystalline Zr(R-PO3)2 and Zr(R-OPO3)2 compounds (R = organic radical). A new class of materials having layered structure of the zirconium phosphate type. J. Inorg. Nucl. Chem. 40, 1113–1117 (1978)

    Google Scholar 

  5. Poojary, M.D., Hu, H.L., Campbell, F.L., Clearfield, A.: Determination of crystal structures from limited powder data sets: crystal structure of zirconium phenylphosphonate. Acta Crystallogr. Sect. B 49, 996–1001 (1993)

    Article  Google Scholar 

  6. Bao, S.S., Shimizu, G.K.H., Zheng, L.M.: Proton conductive metal phosphonate frameworks. Coord. Chem. Rev. 378, 577–594 (2019)

    Article  CAS  Google Scholar 

  7. Shearan, S.J., Stock, N., Emmerling, F., Demel, J., Wright, P.A., Demadis, K.D., Vassaki, M., Costantino, F., Vivani, R., Sallard, S., Salcedo, I.R., Cabeza, A., Taddei, M.: New directions in metal phosphonate and phosphinate chemistry. Curr. Comput. Aided Drug Des. 9, 270 (2019)

    CAS  Google Scholar 

  8. Clearfield, A., David, S.G.: The crystallography and structure of α-zirconium bis(monohydrogen orthophosphate) monohydrate. Inorg. Chem. 8, 431–436 (1969)

    Article  CAS  Google Scholar 

  9. Cunningham, D., Hennelly, P.J.D., Deeney, T.: Divalent metal phenylphosphonates and phenylarsonates. Inorg. Chim. Acta. 37, 95–102 (1979)

    Article  CAS  Google Scholar 

  10. Cao, G., Lee, H., Lynch, V.M., Mallouk, T.E.: Synthesis and structural characterization of a homologous series of divalent-metal phosphonates, MII(O3PR)·H2O and MII(HO3PR)2. Inorg. Chem. 27, 2781–2785 (1988)

    Article  CAS  Google Scholar 

  11. Goura, J., Chandrasekhar, V.: Molecular metal phosphonates. Chem. Rev. 115, 6854–6965 (2015)

    Article  CAS  PubMed  Google Scholar 

  12. Clearfield, A.: The Early History and Growth of Metal Phosphonate Chemistry. In Metal Phosphonate Chemistry, pp. 1–44. Royal Society of Chemistry, Cambridge, UK (2011)

    Google Scholar 

  13. Ristic, A., Tusar, N.N., Arcon, I., Logar, N.Z., Thibault-Starzyk, F., Czyzniewska, J., Kaucic, V.: Large-pore FAPO-36: synthesis and characterization. Chem. Mater. 15, 3643–3649 (2003)

    Article  CAS  Google Scholar 

  14. Martens, J.A., Grobet, P.J., Jacobs, P.A.: Catalytic activity and Si, Al, P ordering in microporous silicoaluminophosphates of the SAPO-5, SAPO-11, and SAPO-37 type. J. Catal. 126, 299–305 (1990)

    Article  CAS  Google Scholar 

  15. Yan, W., Hagaman, E.W., Dai, S.: Functionalization of aluminophosphate AlPO4-H1 (VPI-5) with phenylphosphonic acid. Chem. Mater. 16, 5182–5186 (2004)

    Article  CAS  Google Scholar 

  16. Garcia, R., Shannon, I.J., Slawin, A.M.Z., Zhou, W., Cox, P.A., Wright, P.A.: Synthesis, structure and thermal transformations of aluminophosphates containing the nickel complex [Ni- (Diethylenetriamine)2]2+ as a structure directing agent. Micropor. Mesopor. Mater. 58, 91–104 (2003)

    Article  CAS  Google Scholar 

  17. Grandjean, D., Beale, A.M., Petukhov, A.V., Weckhuysen, B.M.: Unraveling the crystallization mechanism of CoAPO-5 molecular sieves under hydrothermal conditions. J. Am. Chem. Soc. 127, 14454–14465 (2005)

    Article  CAS  PubMed  Google Scholar 

  18. Pramanik, M., Li, C., Imura, M., Malgras, V., Kang, Y.-M., Yamauchi, Y.: Ordered mesoporous cobalt phosphate with crystallized walls toward highly active water oxidation electrocatalysts. Small 12, 1709–1715 (2016)

    Article  CAS  PubMed  Google Scholar 

  19. Yu, J.C., Zhang, L., Zheng, Z., Zhao, J.: Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. Chem. Mater. 15, 2280–2286 (2003)

    Article  CAS  Google Scholar 

  20. Tian, B., Liu, X., Tu, B., Yu, C., Fan, J., Wang, L., **e, S., Stucky, G.D., Zhao, D.: Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs. Nat. Mater. 2, 159–163 (2003)

    Article  CAS  PubMed  Google Scholar 

  21. Liu, G., Jia, M.J., Zhou, Z., Wang, L., Zhang, W.X., Jiang, D.Z.: Synthesis and pore formation study of amorphous mesoporous aluminophosphates in the presence of citric acid. J. Colloid Interface Sci. 302, 278–286 (2006)

    Article  CAS  PubMed  Google Scholar 

  22. Wilke, M., Batzdorf, L., Fischer, F., Rademann, K., Emmerling, F.: Cadmium phenylphosphonates: preparation, characterisation and in situ investigation. RSC Adv. 6, 36011–36019 (2016)

    Article  CAS  Google Scholar 

  23. Wilke, M., Buzanich, A.G., Reinholz, U., Rademann, K., Emmerling, F.: The structure and In Situ synthesis investigation of isomorphic mononuclear molecular metal phenylphosphonates. Dalton Trans. 45, 9460–9467 (2016)

    Article  CAS  PubMed  Google Scholar 

  24. Huang, X., Wu, S.S., Ke, X.K., Li, X.Y., Du, X.Z.: Phosphonated pillar[5]arene-valved mesoporous silica drug delivery systems. ACS Appl. Mater. Interfaces 9, 19638–19645 (2017)

    Article  CAS  PubMed  Google Scholar 

  25. Rim, H.P., Min, K.H., Lee, H.J., Jeong, S.Y., Lee, S.C.: pH tunable calcium phosphate covered mesoporous silica nano containers for intracellular controlled release of guest drugs. Angew. Chem. Int. Ed. 50, 8853–8857 (2011)

    Google Scholar 

  26. Zhang, M.J., Zhang, L.Y., Chen, Y.D., Li, L., Su, Z.M., Wang, C.G.: Precise synthesis of unique polydopamine/mesoporous calcium phosphate hollow janus nanoparticles for imaging-guided chemo-photothermal synergistic therapy. Chem. Sci. 8, 8067–8077 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Colodrero, R.M.P., Olivera-Pastor, P., Cabeza, A., Bazaga-Garcia, M.: Properties and applications of metal phosphates and pyrophosphates as proton conductors. Materials 15, 1292 (2022)

    Google Scholar 

  28. Bhanja, P., Na, J., **, T., Lin, J., Wakihara, T., Bhaumik, A., Yamauchi, Y.: Chem. Mater. 31(15), 5343–5362 (2019)

    Article  CAS  Google Scholar 

  29. Colomban, P.: Chemistry of solid-state materials. In: Proton Conductors: Solid, Membranes and Gels-Materials and Devices, p. 581. Cambridge University Press, Cambridge, UK (1992)

    Google Scholar 

  30. Fragua, D.M., Castillo, J., Castillo, R., Vargas, R.A.: New amorphous phase KnH2PnO3n+1(n≫1) in KH2PO4. Rev. Latin Am. Metal. Mat. 2, 491–497 (2009)

    Google Scholar 

  31. Li, J., Yi, M., Zhang, L., You, Z., Liu, X., Li, B.: Energy related ion transports in coordination polymers. Nano Select. 1–19 (2021)

    Google Scholar 

  32. Sazali, N., Salleh, W.N.W., Jamaludin, A.S., Razali, M.N.M.: New perspectives on fuel cell technology: a brief review. Membranes 10, 99 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dupuis, A.-C.: Proton exchange membranes for fuel cells operated at medium temperatures: materials and experimental techniques. Prog. Mater. Sci. 56, 289–327 (2011)

    Article  CAS  Google Scholar 

  34. Han, X., **e, Y., Liu, D., Chen, Z., Zhang, H., Pang, J., Jiang, Z.: Synthesis and properties of novel poly(arylene ether)s with densely sulfonated units based on carbazole derivative. J. Membr. Sci. 589, 117230 (2019)

    Article  CAS  Google Scholar 

  35. Loreti, G., Facci, A.L., Ubertini, S.: High-efficiency combined heat and power through a high-temperature polymer electrolyte membrane fuel cell and gas turbine hybrid system. Sustainability 13, 12515 (2021)

    Article  CAS  Google Scholar 

  36. Peighambardoust, S.J., Rowshanzamir, S., Amjadi, M.: Review of the proton exchange membranes for fuel cell applications. Int. J. Hydrog. Energy 35, 9349–9384 (2010)

    Article  CAS  Google Scholar 

  37. Aslan, A., Bozkurt, A.: Nanocomposite membranes based on sulfonated polysulfone and sulfated nano-titania/NMPA for proton exchange membrane fuel cells. Solid State Ion. 255, 89–95 (2014)

    Article  CAS  Google Scholar 

  38. **, Y.G., Qiao, S.Z., Xu, Z.P., da Costa, J.C.D., Lu, G.Q.: Porous silica nanospheres functionalized with phosphonic acid as intermediate-temperature proton conductors. J. Phys. Chem. C 113, 3157–3163 (2009)

    Article  CAS  Google Scholar 

  39. Bao, S.S., Li, N.Z., Taylor, J.M., Shen, Y., Kitagawa, H., Zheng, L.M.: Co-Ca phosphonate showing humidity-sensitive single crystal to single crystal structural transformation and tunable proton conduction properties. Chem. Mater. 27, 8116–8125 (2015)

    Article  CAS  Google Scholar 

  40. Wei, Y.S., Hu, X.P., Han, Z., Dong, X.Y., Zang, S.Q., Mak, T.C.W.: Unique proton dynamics in an efficient MOF-based proton conductor. J. Am. Chem. Soc. 139, 3505–3512 (2017)

    Article  CAS  PubMed  Google Scholar 

  41. Alberti, G., Casciola, M., Pica, M., Tarpanelli, T., Sganappa, M.: New preparation methods for composite membranes for medium temperature fuel cells based on precursor solutions of insoluble inorganic compounds. Fuel Cells 5, 366–374 (2005)

    Article  CAS  Google Scholar 

  42. Pili, S., Argent, S.P., Morris, C.G., Rought, P., Garcia-Sakai, V., Silverwood, I.P., Easun, T.L., Li, M., Warren, M.R., Murray, C.A., Tang, C.C., Yang, S.H., Schroder, M.: Proton conduction in a phosphonate-based metal-organic framework mediated by intrinsic “free diffusion inside a sphere.” J. Am. Chem. Soc. 138, 6352–6355 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Begum, S., Wang, Z.Y., Donnadio, A., Costantino, F., Casciola, M., Valiullin, R., Chmelik, C., Bertmer, M., Kaerger, J., Haase, J., Krautscheid, H.: Water-mediated proton conduction in a robust triazolyl phosphonate metal-organic framework with hydrophilic nanochannels. Chem. Eur. J. 20, 8862–8866 (2014)

    CAS  PubMed  Google Scholar 

  44. Zhou, T., Du, Y., Yin, S., Tian, X., Yang, H., Wang, X., Liu, B., Zheng, H., Qiao, S., Xu, R.: Nitrogen-doped cobalt phosphate@ nanocarbon hybrids for efficient electrocatalytic oxygen reduction. Energy Environ. Sci. 9, 2563–2570 (2016)

    Article  CAS  Google Scholar 

  45. Zhou, T.H., Du, Y.H., Wang, D.P., Yin, S.M., Tu, W.G., Chen, Z., Borgna, A., Xu, R.: Phosphonate-based metal-organic framework derived Co-P-C hybrid as an efficient electrocatalyst for oxygen evolution reaction. ACS Catal. 7, 6000–6007 (2017)

    Article  CAS  Google Scholar 

  46. Zhang, R., El-Refaei, S.M., Russo, P.A., Pinna, N.: Metal phosphonate coordination networks and frameworks as precursors of electrocatalysts for the hydrogen and oxygen evolution reactions. J. Nanopart. Res. 20, 146 (2018)

    Article  Google Scholar 

  47. Cai, Z.X., Xu, W., Li, F.M., Yao, Q.H., Chen, X.: Electropolymerization fabrication of Co phosphate nanoparticles encapsulated in N, P-codoped mesoporous carbon networks as a 3D integrated electrode for full water splitting. ACS Sustain. Chem. Eng. 5, 571–579 (2017)

    Article  CAS  Google Scholar 

  48. Pan, D.-S., Chen, P., Zhou, L.-L., Liu, J.-H., Guo, Z.-H., Song, J.-L.: Self-template construction of 2D amorphous N-doped CoFe-mesoporous phosphate microsheets for zinc-air batteries. J. Power Sources 498, 229859 (2021)

    Article  CAS  Google Scholar 

  49. Mayr, H.O., Klehm, J., Schwan, S., Hube, R., Suedkamp, N.P., Niemeyer, P., Salzmann, G., von Eisenhardt-Rothe, R., Heilmann, A., Bohner, M., Bernstein, A.: Microporous calcium phosphate ceramics as tissue engineering scaffolds for the repair of osteochondral defects: biomechanical results. Acta Biomater. 9, 4845–4855 (2013)

    Google Scholar 

  50. Rezwan, K., Chen, Q.Z., Blaker, J.J., Boccaccini, A.R.: Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27, 3413–3431 (2006)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Naghma Shaishta or Asif Hayat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mane, S.K.B., Shaishta, N., Manjunatha, G., Hayat, A. (2023). An Introduction. In: Gupta, R.K. (eds) Metal Phosphates and Phosphonates. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-27062-8_1

Download citation

Publish with us

Policies and ethics

Navigation