Geometric Indoor Radiolocation: History, Trends and Open Issues

  • Chapter
  • First Online:
Machine Learning for Indoor Localization and Navigation

Abstract

In this chapter we discuss some basic approaches for indoor positioning system definition and, in particular, those based on the electromagnetic properties of the received signal, the so-called geometric radiolocation techniques. A brief reference to the localization history, actors, and architectures, along of a taxonomy of the different concepts of localization, introduces the chapter, before presenting a detailed discussion of the most common techniques. The chapter also evidences the issues associated to the indoor propagation environment, in order to understand the efforts made by the scientific community on mitigating the artifacts of indoor localization systems. To complete this discussion, we analyze the role that machine learning and artificial intelligence play in the indoor positioning problem solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 84.39
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 116.04
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdallah AA, Kassas ZM (2021) Multipath mitigation via synthetic aperture beamforming for indoor and deep urban navigation. IEEE Trans Veh Technol 70(9):8838–8853. https://doi.org/10.1109/TVT.2021.3094807

    Article  Google Scholar 

  2. Aernouts M, BniLam N, Berkvens R, Weyn M (2020) TDAoA: a combination of TDoA and AoA localization with LoRaWAN. Internet Things 11:100236. https://doi.org/10.1016/j.iot.2020.100236, https://www.sciencedirect.com/science/article/pii/S254266052030069X

  3. Amjadi SM, Hoque M, Sarabandi K (2017) An iterative array signal segregation algorithm: a method for interference cancelation and multipath mitigation in complex environments. IEEE Antennas Propag Mag 59(3):16–32. https://doi.org/10.1109/MAP.2016.2630034

    Article  Google Scholar 

  4. Avitabile G, Florio A, Coviello G (2020) Angle of arrival estimation through a full-hardware approach for adaptive beamforming. IEEE Trans Circuits Syst II: Express Briefs 67(12):3033–3037. https://doi.org/10.1109/TCSII.2020.2995064

    Google Scholar 

  5. Björnson E, Sanguinetti L, Wymeersch H, Hoydis J, Marzetta TL (2019) Massive mimo is a reality—what is next?: five promising research directions for antenna arrays. Digital Signal Process 94:3–20. https://doi.org/10.1016/j.dsp.2019.06.007, https://www.sciencedirect.com/science/article/pii/S1051200419300776. Special Issue on Source Localization in Massive MIMO

  6. Bnilam N, Tanghe E, Steckel J, Joseph W, Weyn M (2020) Angle: angular location estimation algorithms. IEEE Access 8:14620–14629. https://doi.org/10.1109/ACCESS.2020.2966519

    Article  Google Scholar 

  7. Bohm G, Zech G (2017) Introduction to statistics and data analysis for physicists, 3rd revised. Verlag Deutsches Elektronen-Synchrotron, Hamburg. https://doi.org/10.3204/PUBDB-2017-08987

  8. Chen L, Ahriz I, Le Ruyet D (2020) Aoa-aware probabilistic indoor location fingerprinting using channel state information. IEEE Internet Things J 7(11):10868–10883. https://doi.org/10.1109/JIOT.2020.2990314

    Article  Google Scholar 

  9. Diago-Mosquera ME, Aragón-Zavala A, Castañón G (2020) Bringing it indoors: a review of narrowband radio propagation modeling for enclosed spaces. IEEE Access 8:103875–103899. https://doi.org/10.1109/ACCESS.2020.2999848

    Article  Google Scholar 

  10. Diba FD, Samad MA, Choi DY (2021) Centimeter and millimeter-wave propagation characteristics for indoor corridors: results from measurements and models. IEEE Access 9:158726–158737. https://doi.org/10.1109/ACCESS.2021.3130293

    Article  Google Scholar 

  11. Duan Y, Lam KY, Lee VCS, Nie W, Liu K, Li H, Xue CJ (2019) Data rate fingerprinting: a WLAN-based indoor positioning technique for passive localization. IEEE Sensors J 19(15):6517–6529. https://doi.org/10.1109/JSEN.2019.2911690

    Article  Google Scholar 

  12. Dun H, Tiberius CCJM, Janssen GJM (2020) Positioning in a multipath channel using OFDM signals with carrier phase tracking. IEEE Access 8:13011–13028. https://doi.org/10.1109/ACCESS.2020.2966070

    Article  Google Scholar 

  13. Farahsari PS, Farahzadi A, Rezazadeh J, Bagheri A (2022) A survey on indoor positioning systems for IoT-based applications. IEEE Internet Things J 1–1. https://doi.org/10.1109/JIOT.2022.3149048

  14. Florio A, Avitabile G, Coviello G (2022) Multiple source angle of arrival estimation through phase interferometry. IEEE Trans Circuits Syst II: Express Briefs 69(3):674–678. https://doi.org/10.1109/TCSII.2022.3141247

    Google Scholar 

  15. Florio A, Avitabile G, Coviello G, Ma J, Man KL (2020) The impact of coherent signal reception on interferometric angle of arrival estimation. In: 2020 International SoC Design Conference (ISOCC), pp 167–168. https://doi.org/10.1109/ISOCC50952.2020.9333100

  16. Franek O, Andersen JB, Pedersen GF (2011) Diffuse scattering model of indoor wideband propagation. IEEE Trans Antennas Propag 59(8):3006–3012. https://doi.org/10.1109/TAP.2011.2158791

    Article  Google Scholar 

  17. Guo G, Chen R, Ye F, Liu Z, Xu S, Huang L, Li Z, Qian L (2022) A robust integration platform of Wi-Fi RTT, RSS Signal, and MEMS-IMU for locating commercial smartphone indoors. IEEE Internet Things J 1–1. https://doi.org/10.1109/JIOT.2022.3150958

  18. Han G, Choi D, Lim W (2007) A novel reference node selection algorithm based on trilateration for indoor sensor networks. In: 7th IEEE International Conference on Computer and Information Technology (CIT 2007), pp 1003–1008. https://doi.org/10.1109/CIT.2007.15

  19. Jang B, Kim H (2019) Indoor positioning technologies without offline fingerprinting map: a survey. IEEE Commun Surv Tutorials 21(1):508–525. https://doi.org/10.1109/COMST.2018.2867935

    Article  Google Scholar 

  20. Krim H, Viberg M (1996) Two decades of array signal processing research: the parametric approach. IEEE Signal Process Mag 13(4):67–94. https://doi.org/10.1109/79.526899

    Article  Google Scholar 

  21. Kutty S, Sen D (2016) Beamforming for millimeter wave communications: an inclusive survey. IEEE Commun Surv Tutorials 18(2):949–973. https://doi.org/10.1109/COMST.2015.2504600

    Article  Google Scholar 

  22. Laoudias C, Moreira A, Kim S, Lee S, Wirola L, Fischione C (2018) A survey of enabling technologies for network localization, tracking, and navigation. IEEE Commun Surv Tutorials 20(4):3607–3644. https://doi.org/10.1109/COMST.2018.2855063

    Article  Google Scholar 

  23. Larsson EG, Edfors O, Tufvesson F, Marzetta TL (2014) Massive mimo for next generation wireless systems. IEEE Commun Mag 52(2):186–195. https://doi.org/10.1109/MCOM.2014.6736761

    Article  Google Scholar 

  24. Lee BH, Ham D, Choi J, Kim SC, Kim YH (2021) Genetic algorithm for path loss model selection in signal strength-based indoor localization. IEEE Sensors J 21(21):24285–24296. https://doi.org/10.1109/JSEN.2021.3110971

    Article  Google Scholar 

  25. Li Y, Williams S, Moran B, Kealy A (2019) A probabilistic indoor localization system for heterogeneous devices. IEEE Sensors J 19(16):6822–6832. https://doi.org/10.1109/JSEN.2019.2911707

    Article  Google Scholar 

  26. Lim SY, Yun Z, Iskander MF (2014) Propagation measurement and modeling for indoor stairwells at 2.4 and 5.8 GHz. IEEE Trans Antennas Propag 62(9):4754–4761. https://doi.org/10.1109/TAP.2014.2336258

    Article  MATH  Google Scholar 

  27. Ma Y, Wang B, Pei S, Zhang Y, Zhang S, Yu J (2018) An indoor localization method based on AOA and PDOA using virtual stations in multipath and NLOS environments for passive UHF RFID. IEEE Access 6:31772–31782. https://doi.org/10.1109/ACCESS.2018.2838590

    Article  Google Scholar 

  28. Maccartney GR, Rappaport TS, Sun S, Deng S (2015) Indoor office wideband millimeter-wave propagation measurements and channel models at 28 and 73 GHz for ultra-dense 5G wireless networks. IEEE Access 3:2388–2424. https://doi.org/10.1109/ACCESS.2015.2486778

    Article  Google Scholar 

  29. Motroni A, Buffi A, Nepa P (2021) A survey on indoor vehicle localization through RFID technology. IEEE Access 9:17921–17942. https://doi.org/10.1109/ACCESS.2021.3052316

    Article  Google Scholar 

  30. Nessa A, Adhikari B, Hussain F, Fernando XN (2020) A survey of machine learning for indoor positioning. IEEE Access 8:214945–214965. https://doi.org/10.1109/ACCESS.2020.3039271

    Article  Google Scholar 

  31. Piccinni G, Avitabile G, Coviello G, Talarico C (2020) Real-time distance evaluation system for wireless localization. IEEE Trans Circuits Syst I: Regul Papers 67(10):3320–3330. https://doi.org/10.1109/TCSI.2020.2979347

    Article  Google Scholar 

  32. Prasad KNRSV, Bhargava VK (2021) RSS localization under gaussian distributed path loss exponent model. IEEE Wirel Commun Lett 10(1):111–115. https://doi.org/10.1109/LWC.2020.3021991

    Article  Google Scholar 

  33. Qi Y, Soh CB, Gunawan E, Low KS, Maskooki A (2013) An accurate 3D UWB hyperbolic localization in indoor multipath environment using iterative taylor-series estimation. In: 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), pp 1–5. https://doi.org/10.1109/VTCSpring.2013.6691866

  34. Sarkar T, Ji Z, Kim K, Medouri A, Salazar-Palma M (2003) A survey of various propagation models for mobile communication. IEEE Antennas Propag Mag 45(3):51–82. https://doi.org/10.1109/MAP.2003.1232163

    Article  Google Scholar 

  35. Scherhäufl M, Pichler M, Schimbäck E, Müller DJ, Ziroff A, Stelzer A (2013) Indoor localization of passive UHF RFID tags based on phase-of-arrival evaluation. IEEE Trans Microw Theory Tech 61(12):4724–4729. https://doi.org/10.1109/TMTT.2013.2287183

    Article  Google Scholar 

  36. Schmidt E, Inupakutika D, Mundlamuri R, Akopian D (2019) SDR-Fi: deep-learning-based indoor positioning via software-defined radio. IEEE Access 7:145784–145797. https://doi.org/10.1109/ACCESS.2019.2945929

    Article  Google Scholar 

  37. Singh N, Choe S, Punmiya R (2021) Machine learning based indoor localization using Wi-Fi RSSI fingerprints: an overview. IEEE Access 9:127150–127174. https://doi.org/10.1109/ACCESS.2021.3111083

    Article  Google Scholar 

  38. Wang X, Wang X, Mao S, Zhang J, Periaswamy SC, Patton J (2022) Adversarial deep learning for indoor localization. IEEE Internet Things J 1–1. https://doi.org/10.1109/JIOT.2022.3155562

  39. Zafari F, Gkelias A, Leung KK (2019) A survey of indoor localization systems and technologies. IEEE Commun Surv Tutorials 21(3):2568–2599. https://doi.org/10.1109/COMST.2019.2911558

    Article  Google Scholar 

  40. Zekavat SR, Buehrer RM, Durgin GD, Lovisolo L, Wang Z, Goh ST, Ghasemi A (2021) An overview on position location: past, present, future. Int J Wirel Inf Netw 28(1):45–76. https://doi.org/10.1007/s10776-021-00504-z

    Article  Google Scholar 

  41. Zhang G, Saito K, Fan W, Cai X, Hanpinitsak P, Takada JI, Pedersen GF (2018) Experimental characterization of millimeter-wave indoor propagation channels at 28 GHz. IEEE Access 6:76516–76526. https://doi.org/10.1109/ACCESS.2018.2882644

    Article  Google Scholar 

  42. Zhang Y, Duan L (2020) Toward elderly care: a phase-difference-of-arrival assisted ultra-wideband positioning method in smart home. IEEE Access 8:139387–139395. https://doi.org/10.1109/ACCESS.2020.3012717

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Coviello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Florio, A., Avitabile, G., Coviello, G. (2023). Geometric Indoor Radiolocation: History, Trends and Open Issues. In: Tiku, S., Pasricha, S. (eds) Machine Learning for Indoor Localization and Navigation. Springer, Cham. https://doi.org/10.1007/978-3-031-26712-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26712-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26711-6

  • Online ISBN: 978-3-031-26712-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation