Improvement of Yield in Cowpea Varieties Using Different Breeding Approaches

  • Chapter
  • First Online:
Advanced Crop Improvement, Volume 2

Abstract

Cowpea is an important warm-season legume growing in arid and semi-arid regions. The cowpea productivity is low compared to other legumes such as chickpea, lentil, faba bean and mung bean. The low productivity is attributed to different abiotic and biotic stresses, therefore, different breeding strategies have been introduced and implemented to alleviate the negative impact of environmental stresses. In this chapter, we reviewed the contributions of conventional approaches and modern breeding strategies and their role in the improvement of cowpea genotypes. This chapter discusses in detail challenges and landmark achievements of hybridization, tissue culture, mutation breeding and molecular breeding and its role in mitigating the abiotic and biotic stresses, improving yield and nutritional traits, mining of QTLs associated with economically important traits, development and fine tuning of genetic maps in cowpea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 228.79
Price includes VAT (Spain)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aasim, M., Khawar, K. M., & Özcan, S. (2008). In vitro micropropagation from shoot meristems of Turkish cowpea (Vigna unguiculata L.) cv. Akkiz. Bangladesh Journal of Botany, 37(2), 149–154.

    Article  Google Scholar 

  • Aasim, M., Khawar, M. K., & Özcan, S. (2010). Efficient in vitro propagation from preconditioned embryonic axes of Turkish cowpea (Vigna unguiculata L.) cultivar Akkiz. Archives of Biological Sciences, 62(4), 1047–1052.

    Article  Google Scholar 

  • Abdu Sani, L., Usman, I. S., Ishiaku Faguji, M., & Muhammad Bugaje, S. (2015). Towards efficient in vitro regeneration of cowpea (Vigna unguiculata L. Walp): A review. British Biotechnology Journal, 7, 174–182.

    Article  CAS  Google Scholar 

  • Adekola, O. F., & Oluleye, F. (2007). Influence of mutation induction on the chemical composition of cowpea Vigna unguiculata (L.) Walp. African Journal of Biotechnology, 6(18).

    Google Scholar 

  • Adu-Dapaah, H., Singh, B. B., Chheda, H. R., & Fatokun, C. A. (1988). Heterosis and inbreeding depression in cowpea. Tropical Grain Legume Bulletin, 35, 23–27.

    Google Scholar 

  • Agbicodo, E. M., Fatokun, C. A., Bandyopadhyay, R., Wydra, K., Diop, N. N., Muchero, W., et al. (2010). Identification of markers associated with bacterial blight resistance loci in cowpea [Vigna unguiculata (L.) Walp.]. Euphytica, 175, 215–226. https://doi.org/10.1007/s10681-010-0164-5

    Article  CAS  Google Scholar 

  • Ahenkora, K., Adu-Dapaah, H. K., & Agyemang, A. (1998). Selected nutritional components and sensory attributes of cowpea (Vigna unguiculata [L.]Walp.) leaves. Plant Foods for Human Nutrition, 52, 221–229.

    Article  CAS  PubMed  Google Scholar 

  • Ahloowalia, B. S., Maluszynski, M., & Nichterlein, K. (2004). Global impact of mutation derived varieties. Euphytica, 135(2), 187–204.

    Article  Google Scholar 

  • Ajayi, A., Ologundudu, A., Azuh, V., Daramola, O., & Ar, K. (2017). Colchicine–induced genetic variations in M2 and M3 generations of cowpea (Vigna unguiculata L. Walp).

    Google Scholar 

  • Amin, R., Wani, M. R., Raina, A., Khursheed, S., & Khan, S. (2019). Induced morphological and chromosomal diversity in the mutagenized population of black cumin (Nigella sativa L.) using single and combination treatments of gamma rays and ethyl methane sulfonate. Jordan Journal of Biological Sciences, 12(1), 23–30.

    CAS  Google Scholar 

  • Amusa, O. D., Ogunkanmi, L. A., Adetumbi, J. A., Akinyosoye, S. T., Bolarinwa, K. A., & Ogundipe, O. T. (2022). Intraspecific-cross compatibility in cowpea (Vigna unguiculata (L.) Walp.). Journal of Crop Improvement, 36(2), 207–221.

    Article  CAS  Google Scholar 

  • Ashebir, G., Mebeasilassie, A., & Manikanidan, M. (2013). The response of some cowpea (Vigna unguiculata (L.) Walp.) genotypes for salt stress during germination and seedling stage. Journal of Stress Physiology & Biochemistry, 9, 73–84.

    Google Scholar 

  • Auerbach, C. (1965). Past achievements and future task of research in chemical mutagenesis. Proceedings of the 11th International Conference Genetics, 2, 275–284.

    Google Scholar 

  • Ba, F. S., Pasquet, R. S., & Gepts, P. (2004). Genetic diversity in cowpea [Vigna unguiculata (L.) Walp.] as revealed by RAPD markers. Genetic Resources and Crop Evolution, 51, 539–550. https://doi.org/10.1023/B:GRES.0000024158.83190.4e

    Article  CAS  Google Scholar 

  • Barone, A., & Ng, Q. (1990). Embryological study of crosses between Vigna unguiculata and V. vexillata. In N. Q. Ng & L. M. Monti (Eds.), Cowpea genetic resources (pp. 151–160). IITA.

    Google Scholar 

  • Baudoin, J. P., & Maréchal, R. (1985). Genetic diversity in Vigna. In S. R. Singh & K. O. Rachie (Eds.), Cowpea research, production and utilization (pp. 3–9). Wiley.

    Google Scholar 

  • Bhadru, D., & Navale, P. A. (2012). Early generation selection criteria for high yielding genotypes in two populations of cowpea. Indian Journal of Agricultural Research, 46(1), 65–69.

    Google Scholar 

  • Bhattarai, G., Shi, A., Qin, J., Weng, Y., Bradley Morris, J., Pinnow, D. L., Buckley, B., Ravelombola, W., Yang, W., & Dong, L. (2017). Association analysis of cowpea mosaic virus (CPMV) resistance in the USDA cowpea germplasm collection. Euphytica, 213(10), 1–12.

    Article  Google Scholar 

  • Bind, D., Dwivedi, V. K., & Singh, S. K. (2016). Induction of chlorophyll mutations through physical and chemical mutagenesis in cowpea [Vigna unguiculata (L.) Walp.]. International Journal of Advanced Research, 4(2), 49–53.

    CAS  Google Scholar 

  • Boukar, O., Kong, L., Singh, B. B., Murdock, L., & Ohm, H. W. (2004). AFLP and AFLP-derived SCAR markers associated with Striga gesnerioides resistance in cowpea. Crop Science, 44, 1259–1264. https://doi.org/10.2135/cropsci2004.1259

    Article  CAS  Google Scholar 

  • Brar, M. S., Al-Khayri, J. M., Morelock, T. E., & Anderson, E. J. (1999). Genotypic response of cowpea Vigna unguiculata (L.) to in vitro regeneration from cotyledon explants. In Vitro Cellular & Developmental Biology, 35, 8–12.

    Article  CAS  Google Scholar 

  • Bressani, R. (1985). Nutritive value of cowpea. In S. R. Singh & K. O. Rachie (Eds.), Cowpea research production and utilisation (pp. 353–359). Wiley.

    Google Scholar 

  • Brock, R. D. (1965). Induced mutations affecting quantitative characters. In: The use of induced mutations in plant breeding. Radiation Botany (Suppl.), 5, 451–464.

    Google Scholar 

  • Brock, R. D. (1967). Quantitative variation in Arabidopsis thaliana induced by ionizing radiations. Radiation Botany, 7, 193–203.

    Article  Google Scholar 

  • Burridge, J. D., Schneider, H. M., Huynh, B.-L., Roberts, P. A., Bucksch, A., & Lynch, J. P. (2017). Genome-wide association map** and agronomic impact of cowpea root architecture. Theoretical and Applied Genetics, 130, 419–431.

    Article  CAS  PubMed  Google Scholar 

  • Celik, O., & Atak, C. (2017). Applications of ionizing radiation in mutation breeding. In New insights on gamma rays. InTech.

    Google Scholar 

  • Chari, M., Patel, G., Patel, P., & Raj, S. (1976). Evaluation of cowpea lines for resistance to aphid Aphis craccivora Koch. Gujarat Agricultural University Research, 1, 130–132.

    Google Scholar 

  • Chaudhury, D., Madanpotra, S., Jaiwal, R., Saini, R., Ananda Kumar, P., & Jaiwal, P. K. (2007). Agrobacterium tumefaciens-mediated high frequency genetic transformation of an Indian cowpea (Vigna unguiculata L. Walp.) cultivar and transmission of transgenes into progeny. Plant Sci. 172, 692–700.

    Google Scholar 

  • Cheng, W.-H., Taliercio, E. W., & Chourey, P. S. (1996). The miniature1 seed locus of maize encodes a cell wall invertase required for normal development of endosperm and maternal cells in the pedicel. Plant Cell, 8, 971–983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chheda, H. R., & Fatokun, C. A. (1982). Numerical analysis of variation patterns in okra (Abelmoschus esculentus [L.] Moench). Botanical Gazette, 143, 253–261. https://doi.org/10.1086/337298

    Article  Google Scholar 

  • Clement, J. D., Constable, G. A., Stiller, W. N., & Liu, S. M. (2015). Early generation selection strategies for breeding better combinations of cotton yield and fibre quality. Field Crops Research, 172, 145–152.

    Article  Google Scholar 

  • Deepalakshmi, A. J., & Anandakumar, C. R. (2003). Efficiency and effectiveness of physical and chemical mutagens in urdbean (Vigna mungo (L.) Hepper). Madras Agricultural Journal, 90(7–9), 485–489.

    Google Scholar 

  • Dhanavel, D., Pavadai, P., Mullainathan, L., Mohana, D., Raju, G., Girija, M., & Thilagavathi, C. (2008). Effectiveness and efficiency of chemical mutagens in cowpea (Vigna unguiculata (L.) Walp). African Journal of Biotechnology, 7(22).

    Google Scholar 

  • Diouf, D., & Hilu, K. W. (2005). Microsatellites and RAPD markers to study genetic relation- ship among cowpea breeding lines and local varieties in Senegal. Genetic Resources and Crop Evolution, 52, 1057–1067. https://doi.org/10.1007/s10722-004-6107-z

    Article  CAS  Google Scholar 

  • Egbadzor, K. F., Dadoza, M., Danquah, E. Y., Yeboah, M., Offei, S. K. & Ofori, K. (2013). Genetic control of seed size in cowpea (Vigna unguiculata (L.) Walp). International Journal of Agricultural Science, 5(2), 367–371.

    Google Scholar 

  • Egbadzor, K. F., Ofori, K., Yeboah, M., Aboagye, L. M., & Opoku-Agyeman, M. O. (2014a). Diversity in 113 cowpea [Vigna unguiculata (L.) Walp] accessions assessed with 458 SNP markers (p. 3). Springer.

    Google Scholar 

  • Egbadzor, K. F., Danquah, E. Y., Ofori, K. et al. (2014b). Diversity in 118 cowpea [Vigna unguiculata (L.) Walp] accessions assessed with 16 morphological traits. International Journal of Plant Breeding and Genetics, 8, 13–24. https://doi.org/10.1186/2193-1801-3-541.

  • Emebiri, L. E. (1991). Inheritance of protein content in seeds of selected crosses of cowpea (Vigna unguiculata). Journal of the Science of Food and Agriculture, 54, 1–7.

    Article  CAS  Google Scholar 

  • Fall, L., Diouf, D., Fall-Ndiaye, M. A., Badiane, F. A., & Gueye, M. (2003). Genetic diversity in cowpea [Vigna unguiculata (L.) Walp.] varieties determined by ARA and RAPD techniques. African Journal of Biotechnology, 2, 48–50. https://doi.org/10.5897/AJB2003.000-1009

    Article  CAS  Google Scholar 

  • Fang, J., Chao, C.-C. T., Roberts, P. A., & Ehlers, J. D. (2007). Genetic diversity of cowpea [Vigna unguiculata (L.) Walp.] in four West African and USA breeding programs as determined by AFLP analysis. Genetic Resources and Crop Evolution, 54, 1197–1209. https://doi.org/10.1007/s10722-006-9101-9

    Article  CAS  Google Scholar 

  • Farinu, G. O., & Ingrao, G. (1991). Gross composition, amino acid, phytic acid and trace element content of thirteen cowpea cultivars and their nutritional significance. Journal of the Science of Food and Agriculture, 55, 401–410.

    Article  CAS  Google Scholar 

  • Fatokun, C. A. (1991). Wide hybridization in cowpea: Problems and prospects. Euphytica, 54, 137–140. https://doi.org/10.1007/BF00039599

    Article  Google Scholar 

  • Fatokun, C. A. (2002). Breeding cowpea for resistance to insect pests: attempted crosses between cowpea and Vigna vexillata. In C. A. Fatokun, S. A. Tarawali, B. B. Singh, et al. (Eds), Challenges and opportunities for enhancing sustainable cowpea production. Proceedings of the world cowpea conference III held at IITA, Ibadan, Nigeria, 4–8 September 2000, pp. 52–61.

    Google Scholar 

  • Fatokun, C. A., & Singh, B. B. (1987). Interspecific hybridization between Vigna pubescens and V. unguiculata through embryo rescue. Plant Cell, Tissue and Organ Culture, 9, 229–233.

    Article  Google Scholar 

  • Fatokun, C. A., Menancio-Hautea, D. I., Danesh, D., & Young, N. D. (1992). Evidence for orthologous seed weight genes in cowpea and mung bean based on RFLP map**. Genetics, 132, 841–846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fatokun, C. A., Dariush, D., Menancio-Hautea, D. I., & Young, N. D. (1993). A linkage map for cowpea [Vigna unguiculata (L.) Walp.] based on DNA markers. In S. J. O’Brien (Ed.), Genetic maps. Locus maps of complex genomes (6th ed., pp. 256–258). Cold Spring Harbour Laboratory Press.

    Google Scholar 

  • Fatokun, C. A., Young, N. D., and Myers, G. O. (1997). Molecular markers and genome map** in cowpea in Advances in cowpea research, eds B. B. Singh, D. R. Mohan Raj, K. E. Dashiell, and L. E. N. Jackai (: Co-publication of International Institute of Tropical Agriculture (IITA); Japan International Research Center for Agricultural Sciences (JIRCAS)), 352–360.

    Google Scholar 

  • Folsom, J. J., Begcy, K., Hao, X., Wang, D., & Walia, H. (2014). Rice fertilization- Independent Endosperm1 regulates seed size under heat stress by controlling early endosperm development. Plant Physiology, 165, 238–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foolad, M. R. (2007). Genome map** and molecular breeding of tomato. International Journal of Plant Genomics, 2007.

    Google Scholar 

  • Fotso, M., Azanza, J. L., Pasquet, R. S., & Raymond, J. (1994). Molecular heterogeneity of cowpea (Vigna unguiculata, Fabaceae) seed storage proteins. Plant Systematics and Evolution, 191, 39–56. https://doi.org/10.1007/BF00985341

    Article  CAS  Google Scholar 

  • Ganapathi, A., & Anand, P. (1998). Somatic embryogenesis from young leaves of cowpea (Vigna unguiculata (L.) Walp. (Abstract) in Plant biotechnology and in vitro biology for the 21st century. IX International Congress on Plant Tissue and Cell Culture, 14–19 June 1998, Jerusalem, Israel.

    Google Scholar 

  • Ganger, C. S., & Blakeslee, A. E. (1927). Chromosome and gene mutations in Datura following exposure to radium rays. Proceedings of the National Academy of Sciences of the USA, 10, 75–70.

    Article  Google Scholar 

  • Gaul, H. (1965). The concept of macro and micromutations in barley. Radiation Biology (Suppl.), 5, 407–428.

    Google Scholar 

  • Ghalmi, N., Malice, M., Jacquemin, J. M., Ounane, S. M., Mekliche, L., & Baudoin, J. P. (2010). Morphological and molecular diversity within Algerian cowpea [Vigna unguiculata (L.) Walp.] landraces. Genetic Resources and Crop Evolution, 57, 371–386. https://doi.org/10.1007/s10722-009-9476-5

  • Giami, S. Y. (2005). Compositional and nutritional properties of selected newly developed lines of cowpea (Vigna unguiculata L. Walp). Journal of Food Composition and Analysis, 18(7), 665–673.

    Google Scholar 

  • Gioi, T. D., Boora, K. S., & Chaudhary, K. (2012). Identification and characterization of SSR markers linked to yellow mosaic virus resistance genes in cowpea (Vigna unguiculata). International Journal of Plant Research, 2, 1–8. https://doi.org/10.5923/j.plant.20120201.01

    Article  Google Scholar 

  • Girija, M., & Dhanavel, D. (2009). Mutagenic effectiveness and efficiency of gamma rays, ethyl methane sulphonate and their combination treatment in Cowpea (Vigna unguiculata L. Walp). Global Journal of Molecular Sciences, 4(2), 68–75.

    CAS  Google Scholar 

  • Gnanamurthy, S., & Dhanavel, D. (2014). Effect of EMS on induced morphological mutants and chromosomal variation in Cowpea (Vigna unguiculata (L.) Walp). International Letters of Natural Sciences, 17.

    Google Scholar 

  • Gomathinayagam, P., Rathnaswamy, R., & Ramaswamy, N. M. (1998). Interspecific hybridization between Vigna unguiculata (L.) Walp. and V. vexillata (L.) A. Rich. through in vitro embryo culture. Euphytica, 102, 203–209.

    Article  Google Scholar 

  • Goodspeed, T. B. (1929). The effects of X-rays and radium on species of genus Nicotiana. The Journal of Heredity, 20, 243–259.

    Article  Google Scholar 

  • Goyal, S., Wani, M. R., Laskar, R. A., Raina, A., Amin, R., & Khan, S. (2019a). Induction of Morphological Mutations and Mutant Phenoty** in Black gram [Vigna mungo (L.) Hepper] using Gamma Rays and EMS. Vegetos, 32(4), 464–472.

    Article  Google Scholar 

  • Goyal, S., Wani, M. R., Laskar, R. A., Aamir, R., & Samiullah, K. (2019b). Assessment on cytotoxic and mutagenic potency of gamma rays and EMS in Vigna mungo L. Hepper. Biotecnología Vegetal, 19(3), 193–204.

    Google Scholar 

  • Goyal, S., Wani, M. R., Laskar, R. A., Raina, A., & Khan, S. (2020a). Mutagenic effectiveness and efficiency of individual and combination treatments of gamma rays and ethyl methanesulfonate in black gram [Vigna mungo (L.) Hepper]. Advances in Zoology and Botany, 8(3), 163–168.

    Article  CAS  Google Scholar 

  • Goyal, S., Wani, M. R., Laskar, R. A., Raina, A., & Khan, S. (2020b). Performance evaluation of induced mutant lines of black gram (Vigna mungo (L.) Hepper). Acta Fytotechn Zootechn, 23(2), 70–77.

    Article  Google Scholar 

  • Goyal, S., Wani, M. R., Laskar, R. A., Raina, A., Amin, R., & Khan, S. (2021a). Quantitative assessments on induced high yielding mutant lines in urdbean [Vigna mungo (L.) hepper]. Legume Science. https://doi.org/10.1002/leg3.125

  • Goyal, S., Wani, M. R., Raina, A., Laskar, R. A., & Khan, S. (2021b). Phenotypic diversity in mutagenized population of urdbean (Vigna mungo (L.) Hepper). Heliyon, 7(5), e06356.

    Article  PubMed  PubMed Central  Google Scholar 

  • Greene, E. A., Codomo, C. A., Taylor, N. E., Henikoff, J. G., Till, B. J., Reynolds, S. H., Enns, L. C., Burtner, C., Johnson, J. E., Odden, A. R., Comai, L., & Henikoff, S. (2003). Spectrum of chemically induced mutations from a large scale reverse – Genetic screen in Arabidopsis. Genetics, 164, 731–740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregoria, G. B. (2002). Progress in breeding for trace minerals in staple crops. The Journal of Nutrition, 132, 500S–502S.

    Article  Google Scholar 

  • Gustafsson, A. (1947). Mutations in agricultural plants. Hereditas, 33, 1–99.

    Article  Google Scholar 

  • Hall, A. E., Cisse, N., Thiaw, S., Elawad, H. O. A., Ehlers, J. D., et al. (2003a). Development of cowpea cultivars and germplasm by the Bean/Cowpea CRSP. Field Crops Research, 82, 103–134.

    Article  Google Scholar 

  • Hall, A. E., Cisse, N., Thiaw, S., Elawad, H. O. A., Ehlers, J. D., Ismail, A. M., Fery, R. L., Roberts, P. A., Kitch, L. W., Murdock, L. L., Boukar, O., Phillips, R. D., & McWatters, K. H. (2003b). Development of cowpea cultivars and germplasm by the bean/cowpea. CRSP Field Crops Research, 82, 103–134.

    Article  Google Scholar 

  • Hasan, N., Laskar, R. A., Raina, A., & Khan, S. (2018). Maleic hydrazide induced variability in fenugreek (Trigonella foenum-graecum L.) cultivars CO1 and Rmt-1. Journal of Botanical Sciences, 7(1), 19–28.

    Google Scholar 

  • He, C., Poysa, V., & Yu, K. (2003). Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivars. Theoretical and Applied Genetics, 106, 363–373. https://doi.org/10.1007/s00122-002-1076-0

    Article  CAS  PubMed  Google Scholar 

  • Herniter, I. A., Muñoz-Amatriaín, M., Lo, S., Guo, Y.-N., & Close, T. J. (2018). Identification of candidate genes controlling black seed coat and pod tip color in Cowpea (Vigna unguiculata [L.] Walp). Genes Genomes Genetics, 8, 3347–3355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hugo de Vries. (1901). Die mutation theorie (1 Von, pp. 1–648). Viet and Co.

    Google Scholar 

  • Huynh, B.-L., Close, T. J., Roberts, P. A., Hu, Z., Wanamaker, S., Lucas, M. R., et al. (2013). Gene pools and the genetic architecture of domesticated cowpea. Plant Genome, 6, 1–8. https://doi.org/10.3835/plantgenome2013.03.0005

    Article  CAS  Google Scholar 

  • Huynh, B.-L., Ehlers, J. D., Ndeye, N. N., Wanamaker, S., Lucas, M. R., Close, T. J., et al. (2015). Genetic map** and legume synteny of aphid resistance in African cowpea (Vigna unguiculata L. Walp.) grown in California. Molecular Breeding, 35, 36. https://doi.org/10.1007/s11032-015-0254-0

    Article  CAS  PubMed  Google Scholar 

  • Huynh, B.-L., Matthews, W. C., Ehlers, J. D., Lucas, M. R., Santos J. R. P., et al. (2016). A major QTL corresponding to the Rk locus for resistance to root-knot nematodes in cowpea (Vigna unguiculata L. Walp.). Theoretical and Applied Genetics 129, 87–95.

    Google Scholar 

  • IITA. International Institute of Tropical Agriculture. (1972). Grain legume program (IITA Annual Report) (pp. 13–19). IITA.

    Google Scholar 

  • Ilbas, A. I., Eroglu, Y., & Eroglu, H. E. (2005). Effect of the application of different concentrations of SA for different times on the morphological and cytogenetic characteristics of Barley (Hordeum vulgare L.) seedling. Acta Botanica Sinica, 47, 1101–1106.

    CAS  Google Scholar 

  • Jain, S. M. (2002). Feeding the world with induced mutations and biotechnology. Proceedings of the International Nuclear Conference on Global Trends and Perspectives. Seminar 1: Agriculture and Bioscience, MINT, Bangi, Malaysia, pp. 1–14.

    Google Scholar 

  • Javed, I., Ahsan, M., Ahmad, H. M., & Ali, Q. (2016). Role of mutation breeding to improve Mungbean (Vigna radiata L. Wilczek) yield: An overview. Nature. Science, 14(1), 63–77.

    Google Scholar 

  • **, Y., Ni, D.-A., & Ruan, Y.-L. (2009). Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level. Plant Cell, 21, 2072–2089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • John, S. A. (1999). Mutation frequency and chlorophyll mutations in parents and hybrids of cowpea following gamma irradiation. Indian Journal of Genetics, 59(3), 357–361.

    Google Scholar 

  • Kalapchieva, S., & Tomlekova, N. B. (2016). Sensitivity of two garden pea genotypes to physical and chemical mutagens. Journal of BioScience and Biotechnology, 5(2), 167–171.

    Google Scholar 

  • Kartha, K. K., Pahl, K., Leung, N. L., & Mroginski, L. A. (1981). Plant regeneration from meristems of grain legumes: soybean, cowpea, peanut, chickpea, and bean. Canadian Journal of Botany, 59, 1671–1679.

    Article  CAS  Google Scholar 

  • Khan, S., & Siddiqui, B. A. (1992). Effect of selection for improvement of quantitative characters in mutated population of mungbean (Vigna radiata (L.) Wilczek). Journal of Indian Botanical Society, 71, 69–71.

    Google Scholar 

  • Khan, M. H., & Tyagi, S. D. (2009). Studied on induction of chlorophyll mutations in soybean (Glycine max (L.) Merrill). Frontiers of Agriculture in China, 3(3), 253–258.

    Article  Google Scholar 

  • Kharkwal, M. C. (1983). New selection technique for micro mutations. Abstract XV international congress of genetics. New Delhi, India, p 298.

    Google Scholar 

  • Kharkwal, M. C. (1996). Accomplishments of mutation breeding in crop improvement in India. In M. S. Sachdev, P. Sachdev, & D. L. Deb (Eds.), Isotopes and radiations in agriculture and environment research (pp. 196–218). Indian Society for Nuclear Techniques in Agriculture and Biology, Nuclear Research Laboratory, I.A.R.I..

    Google Scholar 

  • Khursheed, S., Laskar, R. A., Raina, A., Amin, R., & Khan, S. (2015). Comparative analysis of cytological abnormalities induced in Vicia faba L. genotypes using physical and chemical mutagenesis. Chromosome. Science, 18(3–4), 47–51.

    CAS  Google Scholar 

  • Khursheed, S., Raina, A., & Khan, S. (2016). Improvement of yield and mineral content in two cultivars of Vicia faba L. through physical and chemical mutagenesis and their character association analysis. Archives of Current Research International, 4(1), 1–7.

    Article  Google Scholar 

  • Khursheed, S., Raina, A., Parveen, K., & Khan, S. (2017). Induced phenotypic diversity in the mutagenized populations of faba bean using physical and chemical mutagenesis. Journal of the Saudi Society of Agricultural Sciences, 18, 113–119. https://doi.org/10.1016/j.jssas.2017.03.001

    Article  Google Scholar 

  • Khursheed, S., Raina, A., Laskar, R. A., & Khan, S. (2018a). Effect of gamma radiation and EMS on mutation rate: their effectiveness and efficiency in faba bean (Vicia faba L.). Caryologia: International Journal of Cytology, Cytosystematics and Cytogenetics, 71(4), 397–404. https://doi.org/10.1080/00087114.2018.1485430

    Article  Google Scholar 

  • Khursheed, S., Raina, A., & Khan, S. (2018b). Physiological response of two cultivars of faba bean using physical and chemical mutagenesis. International Journal of Advance Research in Science and Engineering, 7(4), 897–905.

    Google Scholar 

  • Khursheed, S., Raina, A., Amin, R., Wani, M. R., & Khan, S. (2018c). Quantitative analysis of genetic parameters in the mutagenized population of faba bean (Vicia faba L.). Research on Crops, 19(2), 276–284.

    Article  Google Scholar 

  • Khursheed, S., Raina, A., Parveen, K., & Khan, S. (2019). Induced phenotypic diversity in the mutagenized populations of faba bean using physical and chemical mutagenesis. Journal of the Saudi Society of Agricultural Sciences, 18(2), 113–119.

    Google Scholar 

  • Konzak, C. F. (1957). III. Genetic effects of radiation on higher plants. The Quarterly Review of Biology, 32(1), 27–45.

    Google Scholar 

  • Langyintuo, A. S., Lowenberg-DeBoer, J., Faye, M., Lamber, D., Ibro, G., et al. (2003). Cowpea supply and demand in West Africa. Field Crops Research, 82, 215–231.

    Article  Google Scholar 

  • Laskar, R. A., & Khan, S. (2017). Assessment on induced genetic variability and divergence in the mutagenized lentil populations of microsperma and macrosperma cultivars developed using physical and chemical mutagenesis. PLoS One, 12(9), e0184598. https://doi.org/10.1371/journal.pone.0184598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laskar, R. A., Khan, S., Khursheed, S., Raina, A., & Amin, R. (2015). Quantitative analysis of induced phenotypic diversity in chickpea using physical and chemical mutagenesis. Journal of Agronomy, 14(3), 102–111.

    Article  CAS  Google Scholar 

  • Laskar, R. A., Laskar, A. A., Raina, A., Khan, S., & Younus, H. (2018a). Induced mutation analysis with biochemical and molecular characterization of high yielding lentil mutant lines. International Journal of Biological Macromolecules, 109, 167–179.

    Article  CAS  PubMed  Google Scholar 

  • Laskar, R. A., Wani, M. R., Raina, A., Amin, R., & Khan, S. (2018b). Morphological characterization of gamma rays induced multipodding mutant (mp) in lentil cultivar Pant L 406. International Journal of Radiation Biology, 94(11), 1049–1053.

    Article  Google Scholar 

  • Laskar, R. A., Khan, S., Deb, C. R., Tomlekova, N., Wani, M. R., Raina, A., & Amin, R. (2019). Lentil (Lens culinaris Medik.) diversity, cytogenetics and breeding. In J. M. Al-Khayri et al. (Eds.), Advances in plant breeding: Legumes (pp. 319–369). Springer. https://doi.org/10.1007/978-3-030-23400-3_9

    Chapter  Google Scholar 

  • Latunde-Dada, A. O. (1990). Genetic Manipulation of the Cowpea (Vigna unguiculata [L.] Walp.) for Enhanced Resistance to Fungal Pathogens and Insect Pests. In N. C. Brady (Ed), Advances in Agronomy (pp. 133–154). Academic Press.

    Google Scholar 

  • Le, B. V., Cruz de Carvalho, M. H., Zuily-Fodil, Y., Thi, A. T. P., Van, K. T. T. (2002). Direct whole plant regeneration of cowpea (Vigna unguiculata (L.) Walp) from cotyledonary node thin cell layer explants. Journal of Plant Journal of Plant Physiology, 159, 1255–1258.

    Google Scholar 

  • Li, C. D., Fatokun, C. A., Ubi, B., Singh, B. B., & Scoles, G. J. (2001). Determining genetic similarities and relationships among cowpea breeding lines and cultivars by microsatellite markers. Crop Science, 41, 189–197.

    Google Scholar 

  • Lo, S., Muñoz-Amatriaín, M., Hokin, S. A., Cisse, N., Roberts, P. A., Farmer, A. D., Xu, S., & Close, T. J. (2019). A genome-wide association and meta-analysis reveal regions associated with seed size in cowpea [Vigna unguiculata (L.) Walp]. Theoretical and Applied Genetics, 132(11), 3079–3087.

    Article  CAS  PubMed  Google Scholar 

  • Lodhi, G. P., Boora, K. S., Jain, S., & Balchand. (1990). Heterosis for fodder yield and quality characters in cowpea (Vigna unguiculata [L.] Walp.). Crop Research, 3, 66–73.

    Google Scholar 

  • Lonardi, S., Muñoz‐Amatriaín, M., Liang, Q., Shu, S., Wanamaker, S. I., Lo, S., Tanskanen, J., Schulman, A. H., Zhu, T., Luo, M. C., & Alhakami, H. (2019). The genome of cowpea (Vigna unguiculata [L.] Walp.). The Plant Journal, 98(5), 767–782.

    Google Scholar 

  • Lucas, M. R., Ehlers, J. D., Roberts, P. A., & Close, T. J. (2012). Markers for quantitative resistance to foliar thrips in cowpea. Crop Science, 52, 2075–2081. https://doi.org/10.2135/cropsci2011.12.0684

    Article  Google Scholar 

  • Machuka, J., Adesoye, A., & Obembe, O. O. (2000). Regeneration and genetic transformation in cowpea. Proceedings of World Cowpea Conference III. (pp. 185–196). IITA.

    Google Scholar 

  • Malik, K. A., & Saxena, P. K. (1992). Thidiazuron induces high frequency of shoot regeneration in intact seedlings of pea (Pisum sativum) chickpea (Cicer arietinum) and lentil (Lens culinaris Medik). Australian Journal of Plant Physiology, 19, 731–740.

    CAS  Google Scholar 

  • Mammadov, J., Aggarwal, R., Buyyarapu, R., & Kumpatla, S. (2012). SNP markers and their impact on plant breeding. International Journal of Plant Genomics, 1–12.

    Google Scholar 

  • Maréchal, R., Mascherpa, J. M., & Stainer, F. (1978). Etude taxonomique d’un group complexe d’especes des genres Phaseolus et Vigna (Papillionaceae) sur la base de donnees morphologiques et polliniques traitees par l’analyse informatique. Boissiera, 28, 1–273.

    Google Scholar 

  • Menendez, C. M., Hall, A. E., & Gepts, P. (1997). A genetic linkage map of cowpea (Vigna unguiculata) developed from a cross between two inbred, domesticated lines. Theoretical and Applied Genetics, 95, 1210–1217.

    Article  CAS  Google Scholar 

  • Micke, A. (1999). Mutations in plant breeding. In B. A. Siddiqui & S. Khan (Eds.), Breeding in crop plants mutations and in vitro mutation breeding (pp. 1–19). Kalyani Publishers.

    Google Scholar 

  • Mignouna, H. D., Ng, Q., Ikea, J., & Thottapilly, G. (1998). Genetic diversity in cowpea as revealed by random amplified polymorphic DNA. Journal of Genetics and Breeding, 52, 151–159.

    CAS  Google Scholar 

  • Mishili, F. J., Fulton, J., Shehu, M., Kushwaha, S., Marfo, K., Jamal, M., Kergna, A., & Lowenberg-DeBoer, J. (2009). Consumer preferences for quality characteristics along the cowpea value chain in Nigeria, Ghana, and Mali. Agribusiness, 25, 16–35.

    Article  Google Scholar 

  • Mitchell, D. C., Lawrence, F. R., Hartman, T. J., & Curran, J. M. (2009). Consumption of dry beans, peas, and lentils could improve diet quality in the US population. Journal of the American Dietetic Association, 109, 909–913.

    Article  CAS  PubMed  Google Scholar 

  • Mohanasundaram, M., Thamburaj, S., & Natarajan, S. (2001). Observation on gamma ray induced viable mutations in vegetable cowpea. Mutation Breeding Newsletter, 45, 37–38.

    Google Scholar 

  • Monti, L. M., Murdock, L. L., & Thottappilly, G. (1997). Opportunities for biotechnology in cowpea. In B. B. Singh, D. R. Mohan Raj, K. E. Dashiell, & J. Len (Eds.), Advances in cowpea research. Copublication of IITA and Japan International Research Center for Agricultural Sciences (JIRCAS) (pp. 341–351). IITA.

    Google Scholar 

  • Moose, S. P., & Mumm, R. H. (2008). Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiology, 147, 969–977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muchero, W., Diop, N. N., Bhat, P. R., Fenton, R. D., Wanamaker, S., Pottorff, M., et al. (2009a). A consensus genetic map of cowpea [Vigna unguiculata (L.) Walp.] and synteny based on EST-derived SNPs. Proceedings. National Academy of Sciences. United States of America, 106, 18159–18164. https://doi.org/10.1073/pnas.0905886106

    Article  CAS  Google Scholar 

  • Muchero, W., Ehlers, J. D., Close, T. J., & Roberts, P. A. (2009b). Map** QTL for drought stress-induced premature senescence and maturity in cowpea [Vigna unguiculata (L.) Walp.]. Theoretical and Applied Genetics, 118, 849–863. https://doi.org/10.1007/s00122-008-0944-7

    Article  CAS  PubMed  Google Scholar 

  • Muchero, W., Ehlers, J. D., & Roberts, P. A. (2010). QTL analysis for resistance to foliar damage caused by Thrips tabaci and Frankliniella schultzei (Thysanoptera: Thripidae) feeding in cowpea [Vigna unguiculata (L.) Walp.]. Molecular Breeding, 25, 47–56. https://doi.org/10.1007/s11032-009-9307-6

    Article  PubMed  Google Scholar 

  • Muchero, W., Ehlers, J. D., Close, T. J., & Roberts, P. A. (2011). Genic SNP markers and legume synteny reveal candidate genes underlying QTL for Macrophomina phaseolina resistance and maturity in cowpea [Vigna unguiculata (L) Walp.]. BMC Genomics, 12(1), 1–14.

    Article  Google Scholar 

  • Muchero, W., Roberts, P. A., Diop, N. N., Drabo, I., Cisse, N., Close, T. J., et al. (2013). Genetic architecture of delayed senescence, biomass, and grain yield under drought stress in cowpea. PLoS One, 8, e70041. https://doi.org/10.1371/journal.pone.0070041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller, H. J. (1927). Artificial transmutation of genes. Science, 66, 84–144.

    Article  CAS  PubMed  Google Scholar 

  • Muñoz-Amatriaín, M., Lo, S., Herniter, I. A., Boukar, O., Fatokun, C., Carvalho, M., Castro, I., Guo, Y. N., Huynh, B. L., Roberts, P. A., & Carnide, V. (2021). The UCR Minicore: a resource for cowpea research and breeding. Legume Science, 3(3), e95.

    Article  Google Scholar 

  • Muthukumar, B., Mariamma, M., & Gnanam, A. (1995). Regeneration of plants from primary leaves of cowpea. Plant Cell, Tissue and Organ Culture, 42, 153–155.

    Article  Google Scholar 

  • Nagl, W., Ignacimuthu, S., & Becker, J. (1997). Genetic engineering and regeneration of Phaseolus and Vigna. State of the art and new attempts. Journal of Plant Physiology, 150, 625–644.

    Article  CAS  Google Scholar 

  • Nair, R. M., Craig, A., Auricht, G., Edwards, O. R., Robinson, S., Otterspoor, M., & Jones, J. A. (2003). Evaluating pasture legumes for resistance to aphids. Animal Production Science, 43, 1345–1349.

    Article  Google Scholar 

  • Nair, R., Mehta, A. K., Singh, K. P., & Sharma, S. K. (2014). Mutagenic effectiveness and efficiency in Cowpea. Advances Applied Research, 6, 78–85.

    Article  Google Scholar 

  • Nakagawa, H., Annai, T., Okabe, A., Takahshi, K., Hajika, M., & Takagi, Y. (2011). Mutation breeding of soybean in Japan. In S. Khan & M. I. Kozgar (Eds.), Breeding of pulse crops (pp. 55–84). Kalyani Publishers.

    Google Scholar 

  • Nkongolo, K. K. (2003). Genetic characterization of Malawian cowpea [Vigna unguiculata (L.) Walp.] landraces: diversity and gene flow among accessions. Euphytica, 129, 219–228. https://doi.org/10.1023/A:1021935431873

    Article  CAS  Google Scholar 

  • Nielsen, S. S., Ohler, T. A. and Mitchell, C. A. (1997). Cowpea leaves for human consumption: production, utilization, and nutrient composition. Advances in Cowpea Research, p.326.

    Google Scholar 

  • Ochatt, S., Atif, R. M., Patat-Ochatt, E., Jacas, L., & Conreux, C. (2010). Competence versus recalcitrance for in vitro regeneration. Notulae Botanicae Horti Agrobotanica Cluj-Napoca, 38(2), 102–108.

    Google Scholar 

  • Odutayo, O. I., Akinrimisi, F. B., Ogunbosoye, I., & Oso, R. T. (2005). Multiple shoot induction from embryo derived callus cultures of cowpea (Vigna unguiculata I.) Walp. African Journal of Biotechnology, 4, 1214–1216.

    Google Scholar 

  • Ogunkanmi, L. A., Ogundipe, O. T., Ng, N. Q., & Fatokun, C. A. (2008). Genetic diversity in wild relatives of cowpea (Vigna unguiculata) as revealed by simple sequence repeats (SSR) markers. Journal of Food, Agriculture and Environment, 6, 253–268.

    Google Scholar 

  • Ohad, N., Margossian, L., Hsu, Y.-C., Williams, C., Repetti, P., & Fischer, R. L. (1996). A mutation that allows endosperm development without fertilization. Proceedings of the National Academy of Sciences, 93, 5319–5324.

    Article  CAS  Google Scholar 

  • Ojomo, O., & Cheda, A. (1975). Induced mutations in cowpea (Vigna unguiculata (L.)Walp.) mutation spectrum and rates. Ghana Journal of Science, 15, 155–158.

    Google Scholar 

  • Oluwatosin, O. B. (1997). Genetic and environmental variation for seed yield. Protein and amino acid composition in cowpea (Vigna unguiculata L. Walp). Journal of the Science of Food and Agriculture, 74, I 07–I116.

    Article  Google Scholar 

  • Ombakho, G. A., Tyagi, A. P., & Pathak, R. S. (1987). Inheritance of resistance to the cowpea aphid in cowpea. Theoretical and Applied Genetics, 74(6), 817–819. https://doi.org/10.1007/BF00247562

    Article  CAS  PubMed  Google Scholar 

  • Omo-Ikerodah, E. E., Fawole, I., & Fatokun, C. (2008). Genetic map** of quantitative trait loci (QTLs) with effects on resistance to flower bud thrips (Megalurothrips sjostedti) in recombinant inbred lines of cowpea [Vigna unguiculata (L.)Walp.]. African Journal of Biotechnology, 7, 263–270.

    CAS  Google Scholar 

  • Ouédraogo, J. T., Gowda, B. S., Jean, M., Close, T. J., Ehlers, J. D., Hall, A. E., et al. (2002a). An improved genetic linkage map for cowpea (Vigna unguiculata L.) combining AFLP, RFLP, RAPD, biochemical markers, and biological resistance traits. Genome, 45, 175–188. https://doi.org/10.1139/g01-102

    Article  PubMed  Google Scholar 

  • Ouédraogo, J. T., Tignegre, J.-B., Timko, M. P., & Belzile, F. J. (2002b). AFLP markers linked to resistance against Striga gesnerioides race 1 in cowpea (Vigna unguiculata). Genome, 45, 787–793. https://doi.org/10.1139/g02-043

    Article  PubMed  Google Scholar 

  • Ouédraogo, J. T., Maheshwari, V., Berner, D. K., St-Pierre, C. A., Belzile, F., & Timko, M. P. (2001). Identification of AFLP markers linked to resistance of cowpea (Vigna unguiculata L.) to parasitism by Striga gesnerioides. Theoretical & Applied Genetics, 102.

    Google Scholar 

  • Padi, F. K., & Ehlers, J. D. (2008). Effectiveness of early generation selection in cowpea for grain yield and agronomic characteristics in semiarid West Africa. Crop Science, 48(2), 533–540.

    Article  Google Scholar 

  • Padulosi, S., & Ng, N. Q. (1997). Origin taxonomy, and morphology of Vigna unguiculata.

    Google Scholar 

  • Pellegrineschi, A. (1997). In vitro plant regeneration via organogenesis of cowpea [Vigna unguiculata (L.) Walp.]. Plant Cell Reports 17, 89–95.

    Google Scholar 

  • Panella, L., & Gepts, P. (1992). Genetic relationships within Vigna unguiculata (L.)Walp. based on isozyme analyses. Genetic Resources and Crop Evolution, 39, 71–88.

    Article  Google Scholar 

  • Pasquet, R. S. (1999). Genetic relationship among subspecies of Vigna unguiculata (L.)Walp. based on allozyme variation. Theoretical and Applied Genetics, 98, 1104–1119. https://doi.org/10.1007/s001220051174

    Article  CAS  Google Scholar 

  • Pasquet, R. S. (2000). Allozyme diversity of cultivated cowpea Vigna unguiculata (L.)Walp. Theoretical and Applied Genetics, 101, 211–219. https://doi.org/10.1007/s001220051471

    Article  CAS  Google Scholar 

  • Pathak, R. (1988). Genetics of resistance to aphid in cowpea. Crop Science, 28, 474–476.

    Article  Google Scholar 

  • Patil, R. B., & Shete, M. M. (1987). Heterosis in crosses of seven genotypes of cowpea. Journal of the Maharashtra Agricultural University, 12, 51–54.

    Google Scholar 

  • Perry, J. A., Wang, T. L., Welham, T. J., Gardner, S., Pike, J. M., Yoshida, S., & Parniske, M. (2003). A TILLING reverse genetics tool and a web- accessible collection of mutants of the legume (Lotus japonicas.). Plant Physiology, 131, 866–871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popelka, J. C., Gollasch, S., Moore, A., et al. (2006). Genetic transformation of cowpea (Vigna unguiculata L.) and stable transmission of transgenes to progeny. Plant Cell Reports, 25, 304–312.

    Article  CAS  PubMed  Google Scholar 

  • Pottorff, M., Ehlers, J. D., Fatokun, C., Roberts, P. A., & Close, T. J. (2012a). Leaf morphology in cowpea [Vigna unguiculata (L.) Walp.]: QTL analysis, physical map** and identifying candidate gene using synteny with model legume species. BMC Genomics, 13, 234. https://doi.org/10.1186/1471-2164-13-234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pottorff, M., Wanamaker, S., Ma, Y. Q., Ehlers, J. D., Roberts, P. A., & Close, T. J. (2012b). Genetic and physical map** of candidate genes for resistance to Fusarium oxysporum f. sp. tracheiphilum race 3 in cowpea [Vigna unguiculata (L.)Walp]. PLoS One, 7, e41600. https://doi.org/10.1371/journal.pone.0041600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pottorff, M., Roberts, P. A., Close, T. J., Lonardi, S., Wanamaker, S., & Ehlers, J. D. (2014a). Identification of candidate genes and molecular markers for heat-induced brown discoloration of seed coats in cowpea [Vigna unguiculata (L.) Walp]. BMC Genomics, 15, 328. https://doi.org/10.1186/1471-2164-15-328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pottorff, M., Roberts, P. A., Close, T. J., Lonardi, S., Wanamaker, S., & Ehlers, J. D. (2014b). Identification of candidate genes and molecular markers for heat-induced brown discoloration of seed coats in cowpea [Vigna unguiculata (L.) Walp]. BMC Genomics, 15(1), 1–11.

    Article  Google Scholar 

  • Prem Anand, R., Ganapathi, A., Ramesh, A., Vengadesan, G., & Selvaraj, N. (2000). High frequency plant regeneration via somatic embryogenesis in cell suspension cultures of cowpea (Vigna unguiculata L. Walp). In Vitro Cellular & Developmental Biology – Plant, 36, 475–480.

    Article  Google Scholar 

  • Qin, J., Shi, A., Mou, B., Bhattarai, G., Yang, W., Weng, Y., & Motes, D. (2017). Association map** of aphid resistance in USDA cowpea (Vigna unguiculata L. Walp.) core collection using SNPs. Euphytica, 213(2), 1–10.

    Article  CAS  Google Scholar 

  • Quass, C. F. (1995). Guidelines for the production of cowpeas. National Department of Agriculture.

    Google Scholar 

  • Raina, A., & Khan, S. (2020). Increasing rice grain yield under biotic stresses: Mutagenesis, transgenics and genomics approaches. In C. Aryadeep (Ed.), Rice research for quality improvement: Genomics and genetic engineering (pp. 149–178). Springer. https://doi.org/10.1007/978-981-15-5337-0_8

    Chapter  Google Scholar 

  • Raina, A., Laskar, R. A., Khursheed, S., Amin, R., Tantray, Y. R., Parveen, K., & Khan, S. (2016). Role of mutation breeding in crop improvement-past, present and future. Asian Research Journal of Agriculture, 2(2), 1–13.

    Article  Google Scholar 

  • Raina, A., Laskar, R. A., Khursheed, S., Khan, S., Parveen, K., Amin, R., & Khan, S. (2017). Induce physical and chemical mutagenesis for improvement of yield attributing traits and their correlation analysis in chickpea. International Letters of Natural Sciences, 61, 14–22.

    Article  Google Scholar 

  • Raina, A., Laskar, R. A., Jahan, R., Khursheed, S., Amin, R., Wani, M. R., Nisa, T. N., & Khan, S. (2018a). Mutation breeding for crop improvement. In M. W. Ansari, S. Kumar, C. K. Babeeta, & R. K. Wattal (Eds.), Introduction to challenges and strategies to improve crop productivity in changing environment (pp. 303–317). Enriched Publications.

    Google Scholar 

  • Raina, A., Khursheed, S., & Khan, S. (2018b). Optimisation of mutagen doses for gamma rays and sodium azide in cowpea genotypes. Trends in Biosciences, 11(13), 2386–2389.

    Google Scholar 

  • Raina, A., Khan, S., Laskar, R. A., Wani, M. R., & Mushtaq, W. (2019). Chickpea (Cicer arietinum L.) cytogenetics, genetic diversity and breeding. In J. M. Al-Khayri et al. (Eds.), Advances in plant breeding: Legumes (pp. 53–112). Springer. https://doi.org/10.1007/978-3-030-23400-3_3

    Chapter  Google Scholar 

  • Raina, A., Laskar, R. A., Tantray, Y. R., Khursheed, S., & Khan, S. (2020a). Characterization of induced high yielding cowpea mutant lines using physiological, biochemical and molecular markers. Scientific Reports, 10, 3687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raina, A., Parmeshwar, K., & Khan, S. (2020b). Increasing rice grain yield under abiotic stresses: Mutagenesis, transgenics and genomics approaches. In C. Aryadeep (Ed.), Rice research for quality improvement: Genomics and genetic engineering (pp. 753–777). Springer. https://doi.org/10.1007/978-981-15-4120-9_31

    Chapter  Google Scholar 

  • Raina, A., Sahu, P. K., Laskar, R. A., Rajora, N., Sao, R., Khan, S., & Ganai, R. A. (2021). Mechanisms of genome maintenance in plants: Playing it safe with breaks and bumps. Frontiers in Genetics, 12, 675686. https://doi.org/10.3389/fgene.2021.675686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raina, A., Laskar, R. A., Wani, M. R., Jan, B. L., Ali, S., & Khan, S. (2022a). Gamma rays and sodium azide induced genetic variability in high yielding and biofortified mutant lines in cowpea [Vigna unguiculata (L.) Walp.]. Frontiers in Plant Science, 13, 911049. https://doi.org/10.3389/fpls.2022.911049

    Article  PubMed  PubMed Central  Google Scholar 

  • Raina, A., Laskar, R. A., Wani, M. R., Jan, B. L., Ali, S., & Khan, S. (2022b). Comparative mutagenic effectiveness and efficiency of gamma rays and sodium azide in inducing chlorophyll and morphological mutants of cowpea. Plants, 11, 1322. https://doi.org/10.3390/plants11101322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raina, A., Laskar, R. A., Wani, M. R., & Khan, S. (2022c). Chemical mutagenesis: Role in Breeding and Biofortification of lentil (Lens culinaris Medik) mutant lines. Molecular Biology Reports, 49(12), 11313–11325. https://doi.org/10.1007/s11033-022-07678-6

    Article  CAS  PubMed  Google Scholar 

  • Raina, A., Laskar, R. A., Wani, M. R., & Khan, S. (2022d). Plant breeding strategies for abiotic stress tolerance in cereals. In Omics approach to manage abiotic stress in cereals (pp. 151–177). Springer. https://doi.org/10.1007/978-981-19-0140-9_8.

  • Ramakrishnan, K., Gnanam, R., Sivakumar, P., & Manickam, A. (2005). In vitro somatic embryogenesis from cell suspension cultures of cowpea [Vigna unguiculata (L.) Walp]. Plant Cell Reports, 24, 449–461.

    Article  CAS  PubMed  Google Scholar 

  • Rasik, S., Raina, A., Laskar, R. A., Wani, M. R., Reshi, Z., & Khan, S. (2022). Lower doses of Sodium azide and Methyl methanesulphonate improved yield and pigment contents in vegetable cowpea [Vigna unguiculata (L.) Walp.]. South African Journal of Botany, 148, 727–736. https://doi.org/10.1016/j.sajb.2022.04.034

    Article  CAS  Google Scholar 

  • Ravelombola, W., Qin, J., Shi, A., Weng, Y., Bhattarai, G., Dong, L., & Morris, J. B. (2017). A SNP-based association analysis for plant growth habit in worldwide cowpea (Vigna unguiculata (L.) Walp) Germplasm. Euphytica, 213(12), 1–13.

    Article  Google Scholar 

  • Ravelombola, W., Shi, A., Weng, Y., Mou, B., Motes, D., Clark, J., Chen, P., Srivastava, V., Qin, J., Dong, L., & Yang, W. (2018). Association analysis of salt tolerance in cowpea (Vigna unguiculata (L.) Walp) at germination and seedling stages. Theoretical and Applied Genetics, 131(1), 79–91.

    Article  CAS  PubMed  Google Scholar 

  • Sawadogo, M., Ouédraogo, J. T., Gowda, B. S., & Timko, M. P. (2010). Genetic diversity of cowpea (Vigna unguiculata L. Walp.) cultivars in Burkina Faso resistant to Striga gesnerioides. African Journal of Biotechnology, 9, 8146–8153. https://doi.org/10.5897/AJB10.1175

    Article  CAS  Google Scholar 

  • Schnapp, S. R., Shade, R. E., Kitch, L. W., Murdock, L. L., Bressan, R. A., & Hasegawa, P. M. (1990). Utilization of in vitro culture methods to facilitate introgression of insect resistance into cowpea (Vigna unguiculata). In Abstracts, 7th International Congress on Plant Tissue and Cell (p. 200).

    Google Scholar 

  • Sellapillai, L., Dhanarajan, A., Raina, A., & Ganesan, A. (2022). Gamma ray induced positive alterations in morphogenetic and yield attributing traits of finger millet (Eleusine coracana (L.) Gaertn.) in M2 generation. Plant Science Today, 9(4), 939–949.

    CAS  Google Scholar 

  • Sellapillaibanumathi, L., Dhanarajan, A., Raina, A., & Ganesan, A. (2022). Effects of gamma radiations on morphological and physiological traits of finger millet (Eleusine coracana (L.) Gaertn.). Plant Science Today, 9(1), 89–95.

    CAS  Google Scholar 

  • Sherif, T. H. I., Omara, M. K., & Damarany, A. M. (1991). Genetic components for seed yield in cowpea under drought-stressed and non-stressed environments. Assiut Journal of Agricultural Sciences, 25, 259–281.

    Google Scholar 

  • Shi, A., Buckley, B., Mou, B., Motes, D., Morris, J. B., Ma, J, **ong, H., Qin, J., Yang, W., Chitwood, J., Weng, Y. (2016). Association analysis of cowpea bacterial blight resistance in USDA cowpea germplasm. Euphytica 208(1), 143–155

    Google Scholar 

  • Shu, Q. Y., Forster, B. P., & Nakagawa, H. (2012). Plant mutation breeding and biotechnology. CAB International and FAO.

    Book  Google Scholar 

  • Simon, M. V., Benko-Iseppon, A. M., Resende, L. V., Winter, P., & Kahl, G. (2007). Genetic diversity and phylogenetic relationships in Vigna savi germplasm revealed by DNA amplification fingerprinting. Genome, 50, 538–547. https://doi.org/10.1139/G07-029

    Article  CAS  PubMed  Google Scholar 

  • Singh, B. B. (2002). Recent genetic studies in cowpea. In C. A. Fatokun, S. A. Tarawali, B. B. Singh, P. M. Kormawa, & M. Tamo (Eds.), Challenges and opportunities for enhancing sustainable cowpea production (pp. 3–13). Intl Inst Tropical Agric.

    Google Scholar 

  • Singh, B. B. (2005). Cowpea [Vigna unguiculata (L.) Walp]. In R. J. Singh & P. P. Jauhar (Eds.), Genetic resources, chromosome engineering and crop improvement (Vol. 1, pp. 117–162). CRC Press.

    Chapter  Google Scholar 

  • Singh, S. R., Jackai, L. E. N., Dos Santos, J. H. R., & Adalla, C. B. (1990). Insect pests of cowpea. In S. R. Singh (Ed.), Insect pests of food legumes (pp. 43–89). Wiley.

    Google Scholar 

  • Singh, B. B., & Tarawali, S. A. (1997). Cowpea and its improvement: key to sustainable mixed crop/livestock farming systems in West Africa. Crop Residues in Sustainable Mixed Crop/Livestock Farming Systems. CAB in Association with ICRISAT and ILRI, Wallingford, UK, pp. 79–100.

    Google Scholar 

  • Singh, B. B., Ehlers, J. D., Sharma, B., & Freire Filho, F. R. (2002). Recent progress in cowpea breeding. In C. A. Fatokun, S. A. Tarawali, B. B. Singh, P. M. Kormawa, & M. Tamo (Eds.), Challenges and opportunities for enhancing sustainable cowpea production (pp. 22–40). Intl Inst Tropical Agric.

    Google Scholar 

  • Singh, D. P., Sharma, S. P., Lal, M., Ranwah, B. R., & Sharma, V. (2013). Induction of genetic variability for polygenic traits through physical and chemical mutagens in cowpea [Vigna unguiculata (L.) Walp]. Legume Research: An International Journal, 36(1).

    Google Scholar 

  • Sneep, J. (1977). Selection for yield and early generation of self-fertilizing crops. Euphytica, 26, 27–30.

    Article  Google Scholar 

  • Spencer, M. M., Ndiaye, M. A., Gueye, M., Diouf, D., Ndiaye, M., & Gresshoff, P. M. (2000). DNA-based relatedness of cowpea [Vigna unguiculata (L.) Walp.] genotypes using DNA amplification fingerprinting. Physiology and Molecular Biology of Plants, 6, 81–88.

    Google Scholar 

  • Stadler, L. J. (1928). Mutations in barley induced by X-rays and radium. Science, 68, 186–187.

    Article  CAS  PubMed  Google Scholar 

  • Stalker, H. T. (1980). Utilization of wild species for crop improvement. Advances in Agronomy, 33, 111–147.

    Google Scholar 

  • Tantray, A. Y., Raina, A., Khursheed, S., Amin, R. U., & Khan, S. A. (2017). Chemical mutagen affects pollination and locule formation in capsules of black cumin (Nigella sativa L.). International Journal of Agricultural Sciences, 8(1), 108–117.

    Google Scholar 

  • Tarawali, S. A., Singh, B. B., Peters, M., & Blade, S. F. (1997). Cowpea haulms as fodder. In B. B. Singh, D. R. Mohan Raj, K. E. Dashiell, & L. E. N. Jackai (Eds.), Advances in cowpea research (pp. 313–325). Copublication Intl Inst Tropical Agric (IITA) and Japan Intl Res Center Agric Sci (JIRCAS).

    Google Scholar 

  • Tarawali, S. A., Singh, B. B., Gupta, S. C., Tabo, R., Harris, F., et al. (2002). Cowpea as a key factor for a new approach to integrated crop–livestock systems research in the dry savannas of West Africa. In C. A. Fatokun, S. A. Tarawali, B. B. Singh, P. M. Kormawa, & M. Tamo (Eds.), Challenges and opportunities for enhancing sustainable cowpea production (pp. 233–251). Intl Inst Tropical Agric.

    Google Scholar 

  • Teofilo, E. M., da Silva, F. P., Alves, J. F., Paiva, J. B., & dos Santos, J. H. R. (1984). Analise genetica de urn cruzamento dialelico em caupi. Pesquisa Agropecuaria Brasileira, 19(7), 849–857.

    Google Scholar 

  • Teyiou, B. J. B., Oumarou, S., Jean-Baptiste, T., Bao-Lam, H., Francis, K., Timothy, J. C., Philip, R., Eric, D., Kwadwo, O., & Tinga, J. O. (2018). Single nucleotide polymorphism (SNP)-based genetic diversity in a set of Burkina Faso cowpea germplasm. African Journal of Agricultural Research, 13(19), 978–987.

    Article  Google Scholar 

  • Timko, M. P., & Singh, B. B. (2008). Cowpea, a multifunctional legume. In P. H. Moore & R. Ming (Eds.), Genomics of tropical crop plants (pp. 227–258). Springer, LLC.

    Chapter  Google Scholar 

  • Timko, M. P., Ehlers, J. D., & Roberts, P. A. (2007a). Cowpea. In C. Kole (Ed.), Pulses, sugar and tuber crops, genome map** and molecular breeding in plants (Vol. 3, pp. 49–67). Springer-Verlag.

    Chapter  Google Scholar 

  • Timko, M. P., Ehlers, J. D., & Roberts, P. A. (2007b). Cowpea. In C. Kole (Ed.), Genome map** and molecular breeding in plants, volume 3, pulses, sugar and tuber crops (pp. 49–67). Springer Verlag.

    Google Scholar 

  • Tollenaar, D. (1934). Untersuchungen ueber Mutation bei Tabak. I Entstehungsweise und Wesen kuenstlich erzeugter Gen-Mutanten. Genetica, 16(1–2), 111–152.

    Article  Google Scholar 

  • Ubi, B. E., Mignouna, H., & Thottappilly, G. (2000). Construction of a genetic linkage map and QTL analysis using a recombinant inbred population derived from an inter-subspecific cross of a cowpea [Vina unguiculata (L.) Walp.]. Breeding Science, 50, 161–173. https://doi.org/10.1270/jsbbs.50.161

    Article  CAS  Google Scholar 

  • Uma, M. S., Hittalamani, S., Murthy, B. C. K., & Viswanatha, K. P. (2009). Microsatellite DNA marker aided diversity analysis in cowpea [Vigna unguiculata (L.)Walp.]. Indian Society of Genetics & Plant Breeding, 69, 33–35.

    Google Scholar 

  • Van Le, B. U. I., de Carvalho, M. H. C., Zuily-Fodil, Y., Thi, A. T. P. & Van, K. T. T. (2002). Direct whole plant regeneration of cowpea [Vigna unguiculata (L.) Walp] from cotyledonary node thin cell layer explants. Journal of plant physiology, 159(11), 1255–1258.

    Google Scholar 

  • Vaillancourt, R. E., & Weeden, N. F. (1992). Chloroplast DNA polymorphism suggests Nigerian center of domestication for the cowpea, Vigna unguiculata (Leguminosae). American Journal of Botany, 79, 1194–1199. https://doi.org/10.2307/2445219

    Article  CAS  PubMed  Google Scholar 

  • Verdcourt, B. (1970). Studies of the Leguminosae-Papilionoideae for ‘Flora of Tropical East Africa’: IV. Kew Bulletin, 507–569.

    Google Scholar 

  • Wamalwa, E. N., Muoma, J. & Wekesa, C. (2016) Genetic Diversity of Cowpea (Vigna unguiculata (L.) Walp.) Accession in Kenya Gene Bank Based on Simple Sequence Repeat Markers. International Journal of Genomics, 2016, 8956412.

    Google Scholar 

  • Wang, L. Z., Wang, L., Zhao, R. J., Pei, Y. L., Fu, Y. Q., Yan, Q. S., & Li, Q. (2003a). Combining radiation mutation techniques with biotechnology for soybean breeding. In Improvement of new and traditional industrial crops by induced mutations and related biotechnology (pp. 107–115). IAEA.

    Google Scholar 

  • Wang, T. L., Domoney, C., Hedley, C. L., Casey, R., & Grusak, M. A. (2003b). Can we improve the nutritional quality of legume seeds? Plant Physiology, 131(3), 886–891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wani, M. R., Khan, S., Kozgar, M. I., & Goyal, S. (2011). Induction of morphological mutants in mungbean (Vigna radiata (L.) Wilczek) through chemical mutagens. Nucleus, 48(3), 243–247.

    CAS  Google Scholar 

  • Wani, M. R., Kozgar, M. I., Khan, S., Ahanger, M. A., & Ahmad, P. (2014a). Induced mutagenesis for the improvement of pulse crops with special reference to mung bean: A review update. In Improvement of crops in the era of climatic changes (pp. 247–288). Springer.

    Google Scholar 

  • Wani, M. R., Kozgar, M. I., Tomlekova, N. B., & Khan, S. (2014b). Selection for polygenic variability in early mutant generations of mungbean (Vigna radiata (L.) Wilczek). In N. B. Tomlekova, M. I. Kozgar, & M. R. Wani (Eds.), Mutagenesis: exploring genetic diversity of crops (pp. 213–232). Wageningen Academic Publishers.

    Chapter  Google Scholar 

  • Wani, M. R., Dar, A. R., Tak, A., Amin, I., Shah, N. H., Rehman, R., Baba, M. Y., Raina, A., Laskar, R., Kozgar, M. I., & Khan, S. (2017). Chemo-induced pod and seed mutants in mungbean (Vigna radiata L. Wilczek). SAARC. Journal of Agriculture, 15(2), 57–67.

    Google Scholar 

  • Wani, M. R., Laskar, R. A., Raina, A., Khan, S., & Khan, T. U. (2021). Application of chemical mutagenesis for improvement of productivity traits in Lentil (Lens culinaris medik). Annals of Biology, 37(1), 69–75.

    Google Scholar 

  • Weber, H., Borisjuk, L., & Wobus, U. (1996). Controlling seed development and seed size in Vicia faba: a role for seed coat-associated invertases and carbohydrate state. The Plant Journal, 10, 823–834.

    Article  CAS  Google Scholar 

  • Win, K. T., & Oo, A. Z. (2015). Genotypic difference in salinity tolerance during early vegetative growth of cowpea (Vigna unguiculata L. Walp.) from Myanmar. Biocatalysis and Agricultural Biotechnology, 4, 449–455.

    Article  Google Scholar 

  • Xavier, G. R., Martins, L. M. V., Rumjanek, N. G., & Filho, F. R. F. (2005). Variabilidade genética em acessos de caupi analisada por meio de marcadores RAPD. Pesquisa Agropecuária Brasileira, 40, 353–359. https://doi.org/10.1590/S0100-204X2005000400006

    Article  Google Scholar 

  • Xu, Y., & Crouch, J. H. (2008). Marker-assisted selection in plant breeding: from publications to practice. Crop Science, 48, 391–407.

    Article  Google Scholar 

  • Xu, P., Wu, X., Wang, B., Liu, Y., Quin, D., Ehlers, J. D., et al. (2010). Development and polymorphism of Vigna unguiculata ssp. unguiculata microsatellite markers used for phylogenetic analysis in asparagus bean [Vigna unguiculata ssp. sesquipedialis (L.) Verdc]. Molecular Breeding, 25, 675–684. https://doi.org/10.1007/s11032-009-9364-x

    Article  CAS  Google Scholar 

  • Xu, P., Wu, X., Muñoz-Amatriaín, M., Wang, B., Wu, X., Hu, Y., Huynh, B. L., Close, T. J., Roberts, P. A., & Zhou, W. (2017). Genomic regions, cellular components and gene regulatory basis underlying pod length variations in cowpea (Vigna unguiculata L. Walp). Plant Biotechnology Journal, 15, 547–557.

    Article  CAS  PubMed  Google Scholar 

  • Zannou, A., Kossou, D. K., Ahanchédé, A., Zoundjihékpon, J., Agbicodo, E., Struik, P. C., et al. (2008). Genetic variability of cultivated cowpea in Benin assessed by random amplified polymorphic DNA. African Journal of Biotechnology, 7, 4407–4414. https://doi.org/10.5897/AJB08.856

    Article  CAS  Google Scholar 

  • Zaidi, M. A., Mohammadi, M., Postel, S., Masson, L., & Altosaar, I. (2005). The Bt gene cry2Aa2 driven by a tissue specific ST-LS1 promoter from potato effectively controls Heliothis virescens. Transgenic Research, 14, 289–298.

    Google Scholar 

  • Zhou, Y., Zhang, X., Kang, X., Zhao, X., Zhang, X., & Ni, M. (2009). SHORT HYPOCOTYL UNDER BLUE1 associates with MINISEED3 and HAIKU2 promoters in vivo to regulate Arabidopsis seed development. Plant Cell, 21, 106–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aamir Raina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raina, A., Laskar, R.A., Wani, M.R., Khan, S. (2023). Improvement of Yield in Cowpea Varieties Using Different Breeding Approaches. In: Raina, A., Wani, M.R., Laskar, R.A., Tomlekova, N., Khan, S. (eds) Advanced Crop Improvement, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-031-26669-0_6

Download citation

Publish with us

Policies and ethics

Navigation