Cost Control and Efficiency Optimization in Maintainability Implementation of Wireless Sensor Networks Based on Serverless Computing

  • Chapter
  • First Online:
Serverless Computing: Principles and Paradigms

Part of the book series: Lecture Notes on Data Engineering and Communications Technologies ((LNDECT,volume 162))

Abstract

Wireless sensor network (WSN) has been developed for decades and have performed well in the performance, power consumption, and congestion control. However, the following problems have not been addressed, such as inaccurate cost estimation of device’s lifecycle, highly-coupled engineering development, and low utilization of hardware and software resources during the life cycle of WSN. Therefore, we first propose the conceptual view of maintainability implementation for WSN based on Serverless Computing. The maintainability implementation refers to the ability to meet the WSN product to consume the minimum resources with a higher probability in configuration, trial production, debugging, batch production, deployment, operation, and maintenance phases. And then, we discuss that Serverless Computing can be realized at the software functional level of WSN to decouple the device operation and functional development, greatly improve the reuse of resources and exclude the hardware interference. From the perspective of maintainability and cost control, the concept of Serverless Computing can be used to build WSN platforms, which can support the functions of data collection and data management into functional development that may benefit from exploration through upfront expenditures, thereby significantly reducing design, manufacturing, and operational costs. Finally, based on existing technologies and smart city scenarios, the idea of a WSN platform for Serverless Computing is given with a case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vasanthi G, Prabakaran N (2022) An improved approach for energy consumption minimizing in WSN using Harris hawks optimization. J Intell Fuzzy Syst 43(4):4445–4456. https://doi.org/10.3233/JIFS-213252

  2. Zimmerling M, Mottola L, Santini S (2020) Synchronous transmissions in low-power wireless: a survey of communication protocols and network services. ACM Comput Surv (CSUR) 53(6):1–39

    Article  Google Scholar 

  3. Liu A et al (2022) A survey on fundamental limits of integrated sensing and communication. IEEE Commun Surv Tutor 24(2):994–1034. https://doi.org/10.1109/COMST.2022.3149272

    Article  Google Scholar 

  4. Khalaf OI, Romero CAT, Hassan S, Iqbal MT (2022) Mitigating hotspot issues in heterogeneous wireless sensor networks. J Sens 2022:1–14. https://doi.org/10.1155/2022/7909472

  5. Stoyanova M, Nikoloudakis Y, Panagiotakis S, Pallis E, Markakis EK (2020) A survey on the Internet of things (IoT) forensics: challenges, approaches, and open issues. IEEE Commun Surv Tutor 22(2):1191–1221. https://doi.org/10.1109/COMST.2019.2962586

    Article  Google Scholar 

  6. Majid M, Habib S, Javed AR et al (2022) Applications of wireless sensor networks and Internet of things frameworks in thISACe industry revolution 4.0: a systematic literature review. Sensors 22(6):2087

    Google Scholar 

  7. Aleksandar V, Mileva A (2016) Running and testing applications for Contiki OS using Cooja simulator, pp 279–285

    Google Scholar 

  8. Guo X, Gao T, Dong C, Cao K, Nan Y, Yu F (2022) A real-time network monitoring technique for wireless sensor networks. In: 2022 IEEE 12th international conference on electronics information and emergency communication (ICEIEC), pp 32–36. https://doi.org/10.1109/ICEIEC54567.2022.9835059

  9. Dong C, Yu F (2015) An efficient network reprogramming protocol for wireless sensor networks. Comput Commun 55:41–50

    Article  Google Scholar 

  10. Alsolai H, Roper M (2020) A systematic literature review of machine learning techniques for software maintainability prediction. Inf Softw Technol 119:106214. https://doi.org/10.1016/j.infsof.2019.106214

    Article  Google Scholar 

  11. Luo X, Ge Z, Zhang S, Yang Y (2021) A method for the maintainability evaluation at design stage using maintainability design attributes. Reliab Eng Syst Saf 210:107535. https://doi.org/10.1016/j.ress.2021.107535

    Article  Google Scholar 

  12. Ahmadi S, Moosazadeh S, Hajihassani M, Moomivand H, Rajaei MM (2019) Reliability, availability and maintainability analysis of the conveyor system in mechanized tunneling. Measurement 145:756–764. https://doi.org/10.1016/j.measurement.2019.06.009

    Article  Google Scholar 

  13. Zhang Q, Dong C, Yu F (2022) Maintenance of large scale wireless sensor networks. In: 2022 IEEE 5th international conference on electronics technology (ICET), pp 929–932. https://doi.org/10.1109/ICET55676.2022.9825017

  14. Shen J, Qiu C, Yu F (2019) A maintainability evaluation method for wireless sensor networks based on AHP and fuzzy comprehensive evaluation. In: 2019 IEEE 2nd international conference on electronics and communication engineering (ICECE). IEEE, 2019, pp 143–147

    Google Scholar 

  15. Gao T, Yu F (2022) A maintainability evaluation method of large scale wireless sensor networks based on sample entropy. In: 2022 IEEE 12th international conference on electronics information and emergency communication (ICEIEC), pp 37–41. https://doi.org/10.1109/ICEIEC54567.2022.9835079

  16. Qiu C, Shen J, Yu F (2019) A maintainability estimation method for wireless sensor networks. In: 2019 IEEE 5th international conference on computer and communications (ICCC). IEEE, 2019, pp 604–608

    Google Scholar 

  17. Wang C, Guo X, Yu F (2022) Maintenance study based on Bayesian network and expectation-maximum algorithm. In: 2022 IEEE 12th international conference on electronics information and emergency communication (ICEIEC), pp 27–31. https://doi.org/10.1109/ICEIEC54567.2022.9835032

  18. Montavon G, Kauffmann J, Samek W et al (2022) Explaining the predictions of unsupervised learning models. In: International workshop on extending explainable AI beyond deep models and classifiers. Springer, Cham, pp 117–138

    Google Scholar 

  19. Li Y, Lin Y, Wang Y et al (2022) Serverless computing: state-of-the-art, challenges and opportunities. IEEE Trans Serv Comput

    Google Scholar 

  20. Gill S, Xu M, Ottaviani C, Patros P, Bahsoon R, Shaghaghi A, Golec M, Stankovski V, Wu H, Abraham A, Singh M (2022) AI for next generation computing: emerging trends and future directions. Internet Things 19:100514

    Article  Google Scholar 

  21. Zhong X, Xu M, Rodriguez A, Xu C, Buyya R (2022) Machine learning-based orchestration of containers: a taxonomy and future directions. ACM Comput Surv 54(10):1–3

    Google Scholar 

  22. Mondal SK, Pan R, Kabir HMD, Tian T, Dai H-N (2022) Kubernetes in IT administration and serverless computing: an empirical study and research challenges. J Supercomput 78(2):2937–2987. https://doi.org/10.1007/s11227-021-03982-3

    Article  Google Scholar 

  23. Yoo S, Jerraya AA (2003) Introduction to hardware abstraction layers for SoC. In: Embedded software for SoC. Springer, Boston, pp 179–186

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tinanan Gao or Minxian Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, T., Xu, M. (2023). Cost Control and Efficiency Optimization in Maintainability Implementation of Wireless Sensor Networks Based on Serverless Computing. In: Krishnamurthi, R., Kumar, A., Gill, S.S., Buyya, R. (eds) Serverless Computing: Principles and Paradigms. Lecture Notes on Data Engineering and Communications Technologies, vol 162. Springer, Cham. https://doi.org/10.1007/978-3-031-26633-1_9

Download citation

Publish with us

Policies and ethics

Navigation