Lung-on-a-Chip Models of the Lung Parenchyma

  • Chapter
  • First Online:
Engineering Translational Models of Lung Homeostasis and Disease

Abstract

Since the publication of the first lung-on-a-chip in 2010, research has made tremendous progress in mimicking the cellular environment of healthy and diseased alveoli. As the first lung-on-a-chip products have recently reached the market, innovative solutions to even better mimic the alveolar barrier are paving the way for the next generation lung-on-chips. The original polymeric membranes made of PDMS are being replaced by hydrogel membranes made of proteins from the lung extracellular matrix, whose chemical and physical properties exceed those of the original membranes. Other aspects of the alveolar environment are replicated, such as the size of the alveoli, their three-dimensional structure, and their arrangement. By tuning the properties of this environment, the phenotype of alveolar cells can be tuned, and the functions of the air-blood barrier can be reproduced, allowing complex biological processes to be mimicked. Lung-on-a-chip technologies also provide the possibility of obtaining biological information that was not possible with conventional in vitro systems. Pulmonary edema leaking through a damaged alveolar barrier and barrier stiffening due to excessive accumulation of extracellular matrix proteins can now be reproduced. Provided that the challenges of this young technology are overcome, there is no doubt that many application areas will benefit greatly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science. 2010;328:1662–8.

    Google Scholar 

  2. Guenat OT, Geiser T, Berthiaume F. Clinically Relevant Tissue Scale Responses as New Readouts from Organs-on-a-Chip for Precision Medicine. Annu Rev Anal Chem (Palo Alto Calif). 2020;13:111–33.

    Google Scholar 

  3. Huh D, Leslie DC, Matthews BD, Fraser JP, Jurek S, Hamilton GA, et al. A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med. 2012;4:159ra147.

    Google Scholar 

  4. Weibel ER, Gomez DM. Architecture of the human lung. Use of quantitative methods establishes fundamental relations between size and number of lung structures. Science. 1962;137:577–85.

    Google Scholar 

  5. Basil MC, Katzen J, Engler AE, Guo M, Herriges MJ, Kathiriya JJ, et al. The Cellular and Physiological Basis for Lung Repair and Regeneration: Past, Present, and Future. Cell Stem Cell. Elsevier Inc.; 2020;26:482–502.

    Google Scholar 

  6. Zepp JA, Morrisey EE. Cellular crosstalk in the development and regeneration of the respiratory system. Nature Reviews Molecular Cell Biology [Internet]. Springer US; 2019; Available from: https://doi.org/10.1038/s41580-019-0141-3

  7. Barkauskas CE, Cronce MJ, Rackley CR, Bowie EJ, Keene DR, Stripp BR, et al. Type 2 alveolar cells are stem cells in adult lung. Journal of Clinical Investigation. 2013;123:3025–36.

    Google Scholar 

  8. Zacharias WJ, Frank DB, Zepp JA, Morley MP, Alkhaleel FA, Kong J, et al. Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature. Nature Publishing Group; 2018;555:251–5.

    Google Scholar 

  9. Strunz M, Simon LM, Ansari M, Kathiriya JJ, Angelidis I, Mayr CH, et al. Alveolar regeneration through a Krt8+ transitional stem cell state that persists in human lung fibrosis. Nature Communications. Springer US; 2020;11:3559.

    Google Scholar 

  10. Travaglini KJ, Nabhan AN, Penland L, Sinha R, Gillich A, Sit RV, et al. A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature. 2020;587:619–25.

    Google Scholar 

  11. Zepp JA, Zacharias WJ, Frank DB, Cavanaugh CA, Zhou S, Morley MP, et al. Distinct Mesenchymal Lineages and Niches Promote Epithelial Self-Renewal and Myofibrogenesis in the Lung. Cell. 2017;170:1134–1148.e10.

    Google Scholar 

  12. Guenat OT, Berthiaume F. Incorporating mechanical strain in organs-on-a-chip: Lung and skin. Biomicrofluidics. 2018;12.

    Google Scholar 

  13. Gehr P, Bachofen M, Weibel ER. The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respiration Physiology. 1978;32:121–40.

    Google Scholar 

  14. Kopf M, Schneider C, Nobs SP. The development and function of lung-resident macrophages and dendritic cells. Nat Immunol. 2015;16:36–44.

    Google Scholar 

  15. Ochs M, Nyengaard JR, Jung A, Knudsen L, Voigt M, Wahlers T, et al. The number of alveoli in the human lung. Am J Respir Crit Care Med. 2004;169:120–4.

    Google Scholar 

  16. Waters CM, Roan E, Navajas D. Mechanobiology in lung epithelial cells: measurements, perturbations, and responses. Compr Physiol. 2012;2:1–29.

    PubMed  PubMed Central  Google Scholar 

  17. Burgstaller G, Oehrle B, Gerckens M, White ES, Schiller HB, Eickelberg O. The instructive extracellular matrix of the lung: basic composition and alterations in chronic lung disease. Eur Respir J. 2017;50:1601805.

    Google Scholar 

  18. Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, et al. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst. 1973;51:1417–23.

    Google Scholar 

  19. Tièche CC, Gao Y, Bührer ED, Hobi N, Berezowska SA, Wyler K, et al. Tumor Initiation Capacity and Therapy Resistance Are Differential Features of EMT-Related Subpopulations in the NSCLC Cell Line A549. Neoplasia. 2019;21:185–96.

    Google Scholar 

  20. Miller AJ, Dye BR, Ferrer-Torres D, Hill DR, Overeem AW, Shea LD, et al. Generation of lung organoids from human pluripotent stem cells in vitro. Nat Protoc. 2019;14:518–40.

    Google Scholar 

  21. Jacob A, Morley M, Hawkins F, McCauley KB, Jean JC, Heins H, et al. Differentiation of Human Pluripotent Stem Cells into Functional Lung Alveolar Epithelial Cells. Cell Stem Cell. Elsevier Inc.; 2017;21:472–488.e10.

    Google Scholar 

  22. Ghaedi M, Mendez JJ, Bove PF, Sivarapatna A, Raredon MSB, Niklason LE. Alveolar epithelial differentiation of human induced pluripotent stem cells in a rotating bioreactor. Biomaterials. 2014;35:699–710.

    CAS  PubMed  Google Scholar 

  23. Tamò L, Hibaoui Y, Kallol S, Alves MP, Albrecht C, Hostettler KE, et al. Generation of an alveolar epithelial type II cell line from induced pluripotent stem cells. Am J Physiol Lung Cell Mol Physiol. 2018;315:L921–32.

    PubMed  Google Scholar 

  24. Alysandratos K-D, Russo SJ, Petcherski A, Taddeo EP, Acín-Pérez R, Villacorta-Martin C, et al. Patient-specific iPSCs carrying an SFTPC mutation reveal the intrinsic alveolar epithelial dysfunction at the inception of interstitial lung disease. Cell Rep. 2021;36:109636.

    Google Scholar 

  25. Youk J, Kim T, Evans KV, Jeong Y-I, Hur Y, Hong SP, et al. Three-Dimensional Human Alveolar Stem Cell Culture Models Reveal Infection Response to SARS-CoV-2. Cell Stem Cell. Elsevier Inc.; 2020;27:905–919.e10.

    Google Scholar 

  26. Weiner AI, Jackson SR, Zhao G, Quansah KK, Farshchian JN, Neupauer KM, et al. Mesenchyme-free expansion and transplantation of adult alveolar progenitor cells: steps toward cell-based regenerative therapies. NPJ Regen Med. 2019;4:17.

    PubMed  PubMed Central  Google Scholar 

  27. Nikolić MZ, Rawlins EL. Lung Organoids and Their Use To Study Cell-Cell Interaction. Curr Pathobiol Rep. 2017;5:223–31.

    PubMed  PubMed Central  Google Scholar 

  28. Leeman KT, Pessina P, Lee J-H, Kim CF. Mesenchymal Stem Cells Increase Alveolar Differentiation in Lung Progenitor Organoid Cultures. Scientific Reports. Springer US; 2019;9:6479.

    Google Scholar 

  29. Evans KV, Lee J-H. Alveolar wars: The rise of in vitro models to understand human lung alveolar maintenance, regeneration, and disease. Stem Cells Transl Med. 2020;9:867–81.

    PubMed  PubMed Central  Google Scholar 

  30. Stucki AO, Stucki JD, Hall SRR, Felder M, Mermoud Y, Schmid RA, et al. A lung-on-a-chip array with an integrated bio-inspired respiration mechanism. Lab Chip. 2015;15:1302–10.

    CAS  PubMed  Google Scholar 

  31. Zamprogno P, Wüthrich S, Achenbach S, Thoma G, Stucki JD, Hobi N, et al. Second-generation lung-on-a-chip with an array of stretchable alveoli made with a biological membrane. Commun Biol. 2021;4:168.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang D, Liu T, Liao J, Maharjan S, **e X, Pérez M, et al. Reversed-engineered human alveolar lung-on-a-chip model. Proc Natl Acad Sci U S A. 2021;118:e2016146118.

    Google Scholar 

  33. Burgess JK, Mauad T, T** G, Karlsson JC, Westergren-Thorsson G. The extracellular matrix - the under-recognized element in lung disease? J Pathol. 2016;240:397–409.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou Y, Horowitz JC, Naba A, Ambalavanan N, Atabai K, Balestrini J, et al. Extracellular matrix in lung development, homeostasis and disease. Matrix Biology [Internet]. Elsevier B.V.; 2018; Available from: https://doi.org/10.1016/j.matbio.2018.03.005

  35. Tan X, Rodrigue D. A Review on Porous Polymeric Membrane Preparation. Part II: Production Techniques with Polyethylene, Polydimethylsiloxane, Polypropylene, Polyimide, and Polytetrafluoroethylene. Polymers (Basel). 2019;11:E1310.

    Google Scholar 

  36. van Meer BJ, de Vries H, Firth KSA, van Weerd J, Tertoolen LGJ, Karperien HBJ, et al. Small molecule absorption by PDMS in the context of drug response bioassays. Biochem Biophys Res Commun. 2017;482:323–8.

    PubMed  PubMed Central  Google Scholar 

  37. Petrou CL, D’Ovidio TJ, Bölükbas DA, Tas S, Brown RD, Allawzi A, et al. Clickable decellularized extracellular matrix as a new tool for building hybrid-hydrogels to model chronic fibrotic diseases in vitro. J Mater Chem B. 2020;8:6814–26.

    Google Scholar 

  38. Nishiguchi A, Singh S, Wessling M, Kirkpatrick CJ, Möller M. Basement Membrane Mimics of Biofunctionalized Nanofibers for a Bipolar-Cultured Human Primary Alveolar-Capillary Barrier Model. Biomacromolecules. 2017;18:719–27.

    Google Scholar 

  39. Higuita-Castro N, Nelson MT, Shukla V, Agudelo-Garcia PA, Zhang W, Duarte-Sanmiguel SM, et al. Using a Novel Microfabricated Model of the Alveolar-Capillary Barrier to Investigate the Effect of Matrix Structure on Atelectrauma. Sci Rep. 2017;7:11623.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Dohle E, Singh S, Nishigushi A, Fischer T, Wessling M, Möller M, et al. Human Co- and Triple-Culture Model of the Alveolar-Capillary Barrier on a Basement Membrane Mimic. Tissue Eng Part C Methods. 2018;24:495–503.

    CAS  PubMed  Google Scholar 

  41. Yang X, Li K, Zhang X, Liu C, Guo B, Wen W, et al. Nanofiber membrane supported lung-on-a-chip microdevice for anti-cancer drug testing. Lab Chip. 2018;18:486–95.

    CAS  PubMed  Google Scholar 

  42. Pensabene V, Costa L, Terekhov AY, Gnecco JS, Wikswo JP, Hofmeister WH. Ultrathin Polymer Membranes with Patterned, Micrometric Pores for Organs-on-Chips. ACS Appl Mater Interfaces. 2016;8:22629–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Montesanto S, Smithers NP, Bucchieri F, Brucato V, La Carrubba V, Davies DE, et al. Establishment of a pulmonary epithelial barrier on biodegradable poly-L-lactic-acid membranes. PLoS One. 2019;14:e0210830.

    Google Scholar 

  44. Tas S, Rehnberg E, Bölükbas DA, Beech JP, Kazado LN, Svenningsson I, et al. 3D printed lung on a chip device with a stretchable nanofibrous membrane for modeling ventilator induced lung injury [Internet]. Bioengineering; 2021 Jul. Available from: http://biorxiv.org/lookup/doi/10.1101/2021.07.02.450873

  45. Dunphy SE, Bratt JAJ, Akram KM, Forsyth NR, El Haj AJ. Hydrogels for lung tissue engineering: Biomechanical properties of thin collagen-elastin constructs. Journal of the Mechanical Behavior of Biomedical Materials. 2014;38:251–9.

    CAS  PubMed  Google Scholar 

  46. Zamprogno P, Thoma G, Cencen V, Ferrari D, Putz B, Michler J, et al. Mechanical Properties of Soft Biological Membranes for Organ-on-a-Chip Assessed by Bulge Test and AFM. ACS Biomater Sci Eng. 2021;7:2990–7.

    CAS  PubMed  Google Scholar 

  47. Barkal LJ, Procknow CL, Álvarez-García YR, Niu M, Jiménez-Torres JA, Brockman-Schneider RA, et al. Microbial volatile communication in human organotypic lung models. Nat Commun. 2017;8:1770.

    PubMed  PubMed Central  Google Scholar 

  48. Stucki JD, Hobi N, Galimov A, Stucki AO, Schneider-Daum N, Lehr C-M, et al. Medium throughput breathing human primary cell alveolus-on-chip model. Sci Rep. 2018;8:14359.

    PubMed  PubMed Central  Google Scholar 

  49. Hassell BA, Goyal G, Lee E, Sontheimer-Phelps A, Levy O, Chen CS, et al. Human Organ Chip Models Recapitulate Orthotopic Lung Cancer Growth, Therapeutic Responses, and Tumor Dormancy In Vitro. Cell Reports. ElsevierCompany.; 2017;21:508–16.

    CAS  Google Scholar 

  50. Thacker VV, Dhar N, Sharma K, Barrile R, Karalis K, McKinney JD. A lung-on-chip model of early Mycobacterium tuberculosis infection reveals an essential role for alveolar epithelial cells in controlling bacterial growth. Elife. 2020;9:e59961.

    Google Scholar 

  51. Seo J, Conegliano D, Farrell M, Cho M, Ding X, Seykora T, et al. A microengineered model of RBC transfusion-induced pulmonary vascular injury. Sci Rep. 2017;7:3413.

    PubMed  PubMed Central  Google Scholar 

  52. Varone A, Nguyen JK, Leng L, Barrile R, Sliz J, Lucchesi C, et al. A novel organ-chip system emulates three-dimensional architecture of the human epithelia and the mechanical forces acting on it. Biomaterials. 2021;275:120957.

    Google Scholar 

  53. Saito A, Nagase T. Hippo and TGF-β interplay in the lung field. Am J Physiol Lung Cell Mol Physiol. 2015;309:L756–767.

    CAS  PubMed  Google Scholar 

  54. Rentzsch I, Santos CL, Huhle R, Ferreira JMC, Koch T, Schnabel C, et al. Variable stretch reduces the pro-inflammatory response of alveolar epithelial cells. PLoS One. 2017;12:e0182369.

    Google Scholar 

  55. Diem K, Fauler M, Fois G, Hellmann A, Winokurow N, Schumacher S, et al. Mechanical stretch activates piezo1 in caveolae of alveolar type I cells to trigger ATP release and paracrine stimulation of surfactant secretion from alveolar type II cells. FASEB J. 2020;34:12785–804.

    CAS  PubMed  Google Scholar 

  56. Cong X, Hubmayr RD, Li C, Zhao X. Plasma membrane wounding and repair in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol. 2017;312:L371–91.

    PubMed  PubMed Central  Google Scholar 

  57. Birukov KG. Cyclic stretch, reactive oxygen species, and vascular remodeling. Antioxid Redox Signal. 2009;11:1651–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ishahak M, Hill J, Amin Q, Wubker L, Hernandez A, Mitrofanova A, et al. Modular Microphysiological System for Modeling of Biologic Barrier Function. Front Bioeng Biotechnol. 2020;8:581163.

    Google Scholar 

  59. Zeinali S, Thompson EK, Gerhardt H, Geiser T, Guenat OT. Remodeling of an in vitro microvessel exposed to cyclic mechanical stretch. APL Bioeng. 2021;5:026102.

    Google Scholar 

  60. Shimizu A, Goh WH, Itai S, Hashimoto M, Miura S, Onoe H. ECM-based microchannel for culturing in vitro vascular tissues with simultaneous perfusion and stretch. Lab Chip. 2020;20:1917–27.

    CAS  PubMed  Google Scholar 

  61. Anguiano M, Castilla C, Maška M, Ederra C, Peláez R, Morales X, et al. Characterization of three-dimensional cancer cell migration in mixed collagen-Matrigel scaffolds using microfluidics and image analysis. PLoS One. 2017;12:e0171417.

    Google Scholar 

  62. Nalayanda DD, Puleo C, Fulton WB, Sharpe LM, Wang T-H, Abdullah F. An open-access microfluidic model for lung-specific functional studies at an air-liquid interface. Biomed Microdevices. 2009;11:1081–9.

    CAS  PubMed  Google Scholar 

  63. van Riet S, Ninaber DK, Mikkers HMM, Tetley TD, Jost CR, Mulder AA, et al. In vitro modelling of alveolar repair at the air-liquid interface using alveolar epithelial cells derived from human induced pluripotent stem cells. Sci Rep. 2020;10:5499.

    PubMed  PubMed Central  Google Scholar 

  64. Mermoud Y, Felder M, Stucki JD, Stucki AO, Guenat OT. Microimpedance tomography system to monitor cell activity and membrane movements in a breathing lung-on-chip. Sensors and Actuators B: Chemical. 2018;255:3647–53.

    CAS  Google Scholar 

  65. Bichsel CA, Hall SRR, Schmid RA, Guenat OT, Geiser T. Primary Human Lung Pericytes Support and Stabilize In Vitro Perfusable Microvessels. Tissue Eng Part A. 2015;21:2166–76.

    CAS  PubMed  Google Scholar 

  66. Haak AJ, Tan Q, Tschumperlin DJ. Matrix biomechanics and dynamics in pulmonary fibrosis. Matrix Biol. 2018;73:64–76.

    CAS  PubMed  Google Scholar 

  67. Sundarakrishnan A, Zukas H, Coburn J, Bertini BT, Liu Z, Georgakoudi I, et al. Bioengineered in Vitro Tissue Model of Fibroblast Activation for Modeling Pulmonary Fibrosis. ACS Biomater Sci Eng. 2019;5:2417–29.

    CAS  PubMed  Google Scholar 

  68. Felder M, Trueeb B, Stucki AO, Borcard S, Stucki JD, Schnyder B, et al. Impaired Wound Healing of Alveolar Lung Epithelial Cells in a Breathing Lung-On-A-Chip. Front Bioeng Biotechnol. 2019;7:3.

    PubMed  PubMed Central  Google Scholar 

  69. Mejías JC, Nelson MR, Liseth O, Roy K. A 96-well format microvascularized human lung-on-a-chip platform for microphysiological modeling of fibrotic diseases. Lab Chip. 2020;20:3601–11.

    PubMed  Google Scholar 

  70. Asmani M, Velumani S, Li Y, Wawrzyniak N, Hsia I, Chen Z, et al. Fibrotic microtissue array to predict anti-fibrosis drug efficacy. Nat Commun. 2018;9:2066.

    PubMed  PubMed Central  Google Scholar 

  71. Felder M, Trueeb B, Stucki AO, Borcard S, Stucki JD, Schnyder B, et al. Impaired Wound Healing of Alveolar Lung Epithelial Cells in a Breathing Lung-On-A-Chip. Frontiers in bioengineering and biotechnology. 2019;7:3.

    PubMed  PubMed Central  Google Scholar 

  72. Foreman KJ, Marquez N, Dolgert A, Fukutaki K, Fullman N, McGaughey M, et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016-40 for 195 countries and territories. Lancet. 2018;392:2052–90.

    PubMed  PubMed Central  Google Scholar 

  73. Tuder RM, Yoshida T, Arap W, Pasqualini R, Petrache I. State of the art. Cellular and molecular mechanisms of alveolar destruction in emphysema: an evolutionary perspective. Proc Am Thorac Soc. 2006;3:503–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Krimmer DI, Oliver BGG. What can in vitro models of COPD tell us? Pulm Pharmacol Ther. 2011;24:471–7.

    CAS  PubMed  Google Scholar 

  75. Madl AK, Plummer LE, Carosino C, Pinkerton KE. Nanoparticles, lung injury, and the role of oxidant stress. Annu Rev Physiol. 2014;76:447–65.

    CAS  PubMed  Google Scholar 

  76. Zhang M, Xu C, Jiang L, Qin J. A 3D human lung-on-a-chip model for nanotoxicity testing. Toxicol Res (Camb). 2018;7:1048–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307:2526–33.

    Google Scholar 

  78. Nalayanda DD, Fulton WB, Colombani PM, Wang T-H, Abdullah F. Pressure induced lung injury in a novel in vitro model of the alveolar interface: protective effect of dexamethasone. J Pediatr Surg. 2014;49:61–5; discussion 65.

    Google Scholar 

  79. Xu C, Zhang M, Chen W, Jiang L, Chen C, Qin J. Assessment of Air Pollutant PM2.5 Pulmonary Exposure Using a 3D Lung-on-Chip Model. ACS Biomater Sci Eng. 2020;6:3081–90.

    CAS  PubMed  Google Scholar 

  80. Deinhardt-Emmer S, Rennert K, Schicke E, Cseresnyés Z, Windolph M, Nietzsche S, et al. Co-infection with Staphylococcus aureus after primary influenza virus infection leads to damage of the endothelium in a human alveolus-on-a-chip model. Biofabrication. 2020;12:025012.

    Google Scholar 

  81. Carsana L, Sonzogni A, Nasr A, Rossi RS, Pellegrinelli A, Zerbi P, et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. Lancet Infect Dis. 2020;20:1135–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Zaim S, Chong JH, Sankaranarayanan V, Harky A. COVID-19 and Multiorgan Response. Curr Probl Cardiol. 2020;45:100618.

    Google Scholar 

  83. Kiener M, Roldan N, Machahua C, Sengupta A, Geiser T, Guenat OT, et al. Human-Based Advanced in vitro Approaches to Investigate Lung Fibrosis and Pulmonary Effects of COVID-19. Front Med (Lausanne). 2021;8:644678.

    Google Scholar 

  84. Deinhardt-Emmer S, Böttcher S, Häring C, Giebeler L, Henke A, Zell R, et al. SARS-CoV-2 causes severe epithelial inflammation and barrier dysfunction. J Virol. 2021;JVI.00110-21.

    Google Scholar 

  85. Zhang M, Wang P, Luo R, Wang Y, Li Z, Guo Y, et al. Biomimetic Human Disease Model of SARS-CoV-2 Induced Lung Injury and Immune Responses on Organ Chip System. Adv Sci (Weinh). 2020;2002928.

    Google Scholar 

  86. Thacker VV, Sharma K, Dhar N, Mancini G-F, Sordet-Dessimoz J, McKinney JD. Rapid endotheliitis and vascular damage characterize SARS-CoV-2 infection in a human lung-on-chip model. EMBO Rep. 2021;22:e52744.

    Google Scholar 

  87. Denisenko TV, Budkevich IN, Zhivotovsky B. Cell death-based treatment of lung adenocarcinoma. Cell Death Dis. 2018;9:117.

    PubMed  PubMed Central  Google Scholar 

  88. Singleton DC, Macann A, Wilson WR. Therapeutic targeting of the hypoxic tumour microenvironment. Nat Rev Clin Oncol. 2021;

    Google Scholar 

  89. Park S, Kim TH, Kim SH, You S, Jung Y. Three-Dimensional Vascularized Lung Cancer-on-a-Chip with Lung Extracellular Matrix Hydrogels for In Vitro Screening. Cancers (Basel). 2021;13:3930.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Piergiovanni M, Leite SB, Corvi R, Whelan M. Standardisation needs for organ on chip devices. Lab Chip. 2021;21:2857–68.

    CAS  PubMed  Google Scholar 

  91. Beers MF, Moodley Y. When Is an Alveolar Type 2 Cell an Alveolar Type 2 Cell? A Conundrum for Lung Stem Cell Biology and Regenerative Medicine. Am J Respir Cell Mol Biol. 2017;57:18–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. McMinn PH, Hind LE, Huttenlocher A, Beebe DJ. Neutrophil trafficking on-a-chip: an in vitro, organotypic model for investigating neutrophil priming, extravasation, and migration with spatiotemporal control. Lab Chip. 2019;19:3697–705.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Oleaga C, Bernabini C, Smith AST, Srinivasan B, Jackson M, McLamb W, et al. Multi-Organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci Rep. 2016;6:20030.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Marsland BJ, Trompette A, Gollwitzer ES. The Gut-Lung Axis in Respiratory Disease. Ann Am Thorac Soc. 2015;12 Suppl 2:S150–156.

    PubMed  Google Scholar 

  95. Mencattini A, Mattei F, Schiavoni G, Gerardino A, Businaro L, Di Natale C, et al. From Petri Dishes to Organ on Chip Platform: The Increasing Importance of Machine Learning and Image Analysis. Front Pharmacol. 2019;10:100.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang B, Korolj A, Lai BFL, Radisic M. Advances in organ-on-a-chip engineering. Nat Rev Mater. 2018;3:257–78.

    Google Scholar 

  97. Kilic T, Navaee F, Stradolini F, Renaud P, Carrara S. Organs-on-chip monitoring: sensors and other strategies. Microphysiol Syst. 2018;1:1–1.

    Google Scholar 

  98. Khalid MAU, Kim YS, Ali M, Lee BG, Cho Y-J, Choi KH. A lung cancer-on-chip platform with integrated biosensors for physiological monitoring and toxicity assessment. Biochemical Engineering Journal. 2020;155:107469.

    Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the Swiss National Science Foundation (project: 185365), the Swiss 3R Competence Centre (project: 3RCC-OC-2019-025), the H2020 Eurostars (project: AIM4DoC) and MSCA-ITN (EUROoC, project: 812954), Innosuisse (project: 48818.1 IP-LS) and the Novartis Foundation for medical-biological Research (project: #20B146). The authors thank Dr. Anne Morbach for the illustration of Fig. 10.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier T. Guenat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zamprogno, P. et al. (2023). Lung-on-a-Chip Models of the Lung Parenchyma. In: Magin, C.M. (eds) Engineering Translational Models of Lung Homeostasis and Disease. Advances in Experimental Medicine and Biology, vol 1413. Springer, Cham. https://doi.org/10.1007/978-3-031-26625-6_10

Download citation

Publish with us

Policies and ethics

Navigation