Bone Cells Metabolic Changes Induced by Ageing

  • Chapter
  • First Online:
Biochemistry and Cell Biology of Ageing: Part IV, Clinical Science

Part of the book series: Subcellular Biochemistry ((SCBI,volume 103))

  • 978 Accesses

Abstract

Bone is a living organ that exhibits active metabolic processes, presenting constant bone formation and resorption. The bone cells that maintain local homeostasis are osteoblasts, osteoclasts, osteocytes and bone marrow stem cells, their progenitor cells. Osteoblasts are the main cells that govern bone formation, osteoclasts are involved in bone resorption, and osteocytes, the most abundant bone cells, also participate in bone remodeling. All these cells have active metabolic activities, are interconnected and influence each other, having both autocrine and paracrine effects. Ageing is associated with multiple and complex bone metabolic changes, some of which are currently incompletely elucidated. Ageing causes important functional changes in bone metabolism, influencing all resident cells, including the mineralization process of the extracellular matrix. With advancing age, a decrease in bone mass, the appearance of specific changes in the local microarchitecture, a reduction in mineralized components and in load-bearing capacity, as well as the appearance of an abnormal response to different humoral molecules have been observed. The present review points out the most important data regarding the formation, activation, functioning, and interconnection of these bone cells, as well as data on the metabolic changes that occur due to ageing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdallah BM, Haack-Sørensen M, Fink T, Kassem M (2006) Inhibition of osteoblast differentiation but not adipocyte differentiation of mesenchymal stem cells by sera obtained from aged females. Bone 39:181–188

    Article  Google Scholar 

  • Almeida M, Han L, Martin-Millan M, Plotkin LI, Stewart SA, Roberson PK, Kousteni S, O’Brien CA, Bellido T, Parfitt AM et al (2007) Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem 282:27285–27297

    Article  Google Scholar 

  • Al Saedi A, Bermeo S, Plotkin L, Myers DE, Duque G (2019) Mechanisms of palmitate-induced lipotoxicity in osteocytes. Bone 127:353–359

    Article  Google Scholar 

  • Asada N, Sato M, Katayama Y (2015) Communication of bone cells with hematopoiesis, immunity and energy metabolism. Bonekey Rep 4:748

    Article  Google Scholar 

  • Bartelt A, Koehne T, Todter K, Reimer R, Muller B, Behler-Janbeck F et al (2017) Quantification of bone fatty acid metabolism and its regulation by adipocyte lipoprotein lipase. Int J Mol Sci 18(6):E1264. https://doi.org/10.3390/ijms18061264

    Article  Google Scholar 

  • Battaglino R, Kim D, Fu J, Vaage B, Fu XY, Stashenko P (2002) C-myc is required for osteoclast differentiation. J Bone Miner Res 17(5):763–773. https://doi.org/10.1359/jbmr.2002.17.5.763

    Article  Google Scholar 

  • Becerikli M, Jaurich H, Schira J, Schulte M, Döbele C, Wallner C, Abraham S, Wagner JM, Dadras M, Kneser U et al (2017) Age-dependent alterations in osteoblast and osteoclast activity in human cancellous bone. J Cell Mol Med 21:2773–2781

    Article  Google Scholar 

  • Bianco P, Robey PG (2015) Skeletal stem cells. Development 142:1023–1027

    Article  Google Scholar 

  • Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19(3):180–192. https://doi.org/10.1634/stemcells.19-3-180

    Article  Google Scholar 

  • Bionaz M, Monaco E, Wheeler MB (2015) Transcription adaptation during in vitro adipogenesis and osteogenesis of porcine mesenchymal stem cells: dynamics of pathways, biological processes, up-stream regulators, and gene networks. PLoS ONE 10:e0137644

    Article  Google Scholar 

  • Bonewald LF (2011) The amazing osteocyte. J Bone Miner Res 26(2):229–238

    Article  Google Scholar 

  • Boros K, Freemont T (2017) Physiology of ageing of the musculoskeletal system. Best Pract Res Clin Rheumatol 31:203–217

    Article  Google Scholar 

  • Boskey AL, Imbert L (2017) Bone quality changes associated with ageing and disease: a review. Ann N Y Acad Sci 1410(1):93–106. https://doi.org/10.1111/nyas.13572

    Article  Google Scholar 

  • Boyce BF, **ng L (2008) Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 473(2):139–146. https://doi.org/10.1016/j.abb.2008.03.018

    Article  Google Scholar 

  • Cao J, Venton L, Sakata T, Halloran BP (2003) Expression of RANKL and OPG correlates with age-related bone loss in male C57BL/6 mice. J Bone Miner Res 18:270–277

    Article  Google Scholar 

  • Cao JJ, Wronski TJ, Iwaniec U, Phleger L, Kurimoto P, Boudignon B, Halloran BP (2005) Ageing increases stromal/osteoblastic cell-induced osteoclastogenesis and alters the osteoclast precursor pool in the mouse. J Bone Miner Res 20:1659–1668

    Article  Google Scholar 

  • Cappariello A, Maurizi A, Veeriah V, Teti A (2014) The great beauty of the osteoclast. Arch Biochem Biophys 558:70–78. https://doi.org/10.1016/j.abb.2014.06.017

    Article  Google Scholar 

  • Chen D, Zhao M, Mundy GR (2004) Bone morphogenetic proteins. Growth Factors 22(4):233–241. https://doi.org/10.1080/08977190412331279890

    Article  Google Scholar 

  • Chen H, Senda T, Kubo KY (2015) The osteocyte plays multiple roles in bone remodeling and mineral homeostasis. Med Mol Morphol 48:61–68

    Article  Google Scholar 

  • Chung PL, Zhou S, Eslami B, Shen L, LeBo MS, Glowacki J (2014) Effect of age on regulation of human osteoclast differentiation. J Cell Biochem 115:1412–1419

    Article  Google Scholar 

  • Cici D, Corrado A, Rotondo C, Cantatore FP (2019) Wnt signaling and biological therapy in rheumatoid arthritis and spondyloarthritis. Int J Mol Sci 20:5552

    Article  Google Scholar 

  • Corrado A, Neve A, Macchiarola A, Gaudio A, Marucci A, Cantatore FP (2013) RANKL/OPG ratio and DKK-1 expression in primary osteoblastic cultures from osteoarthritic and osteoporotic subjects. J Rheumatol 40:684–694

    Article  Google Scholar 

  • Corrado A, Cici D, Rotondo C, Maruotti N, Cantatore FP (2020) Molecular basis of bone ageing. Int J Mol Sci 21(10):3679

    Article  Google Scholar 

  • Dallas SL, Prideaux M, Bonewald LF (2013) The osteocyte: an endocrine cell and more. Endocr Rev 34(5):658–690

    Article  Google Scholar 

  • Davis HM, Aref MW, Aguilar-Perez A, Pacheco-Costa R, Allen K, Valdez S, Herrera C, Atkinson EG, Mohammad A, Lopez D et al (2018) Cx43 overexpression in osteocytes prevents osteocyte apoptosis and preserves cortical bone quality in ageing mice. JBMR Plus 2:206–216

    Article  Google Scholar 

  • Ducy P, Zhang R, Georoy V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89:747–754

    Article  Google Scholar 

  • Elbaz A, Wu X, Rivas D, Gimble JM, Duque G (2010) Inhibition of fatty acid biosynthesis prevents adipocyte lipotoxicity on human osteoblasts in vitro. J Cell Mol Med 14(4):982–991. https://doi.org/10.1111/j.1582-4934.2009.00751.x

    Article  Google Scholar 

  • Farr JN, Khosla S (2019) Cellular senescence in bone. Bone 121:121–133

    Article  Google Scholar 

  • Feehan J, Al Saedi A, Duque G (2019) Targeting fundamental ageing mechanisms to treat osteoporosis. Expert Opin Ther Targets 23:1031–1039

    Article  Google Scholar 

  • Fleet JC, Cashman K, Cox K, Rosen V (1996) The effects of ageing on the bone inductive activity of recombinant human bone morphogenetic protein-2. Endocrinology 137:4605–4610

    Article  Google Scholar 

  • Fritton SP, Weinbaum S (2009) Fluid and solute transport in bone: flow-induced mechanotransduction. Annu Rev Fluid Mech 41:347–374

    Article  Google Scholar 

  • Galea GL, Meakin LB, Williams CM, Hulin-Curtis SL, Lanyon LE, Poole AW, Price JS (2014) Protein kinase Calpha (PKCalpha) regulates bone architecture and osteoblast activity. J Biol Chem 289(37):25509–25522. https://doi.org/10.1074/jbc.M114.580365

    Article  Google Scholar 

  • Gasparrini M, Rivas D, Elbaz A, Duque G (2009) Differential expression of cytokines in subcutaneous and marrow fat of ageing C57BL/6J mice. Exp Gerontol 44(9):613–618. https://doi.org/10.1016/j.exger.2009.05.009

    Article  Google Scholar 

  • Gaudio A, Pennisi P, Bratengeier C, Torrisi V, Lindner B, Mangiafico RA, Pulvirenti I, Hawa G, Tringali G, Fiore CE (2010) Increased sclerostin serum levels associated with bone formation and resorption markers in patients with immobilization-induced bone loss. J Clin Endocrinol Metab 95:2248–2253

    Article  Google Scholar 

  • Gibon E, Lu L, Goodman SB (2016) Ageing, inflammation, stem cells, and bone healing. Stem Cell Res Ther 7:44

    Article  Google Scholar 

  • Gunaratnam K, Vidal C, Gimble J, Duque G (2014) Mechanisms of palmitate-induced lipotoxicity in human osteoblasts. Gen Endocrinol 155(1):108–116

    Article  Google Scholar 

  • Hadjidakis DJ, Androulakis II (2006) Bone remodeling. Ann N Y Acad Sci 1092:385–396. https://doi.org/10.1196/annals.1365.035

    Article  Google Scholar 

  • Heino TJ, Hentunen TA (2008) Differentiation of osteoblasts and osteocytes from mesenchymal stem cells. Curr Stem Cell Res Ther 3(2):131–145. https://doi.org/10.2174/157488808784223032

    Article  Google Scholar 

  • Hemmatian H, Bakker AD, Klein-Nulend J, van Lenthe GH (2017) Ageing, osteocytes and mechanotransduction. Curr Osteoporos Rep 15:401

    Article  Google Scholar 

  • Henriksen K, Leeming DJ, Byrjalsen I, Nielsen RH, Sorensen MG, Dziegiel MH, Martin TJ, Christiansen C, Qvist P, Karsdal MA (2007) Osteoclasts prefer aged bone. Osteoporos Int 18:751–759

    Article  Google Scholar 

  • Heveran CM, Rauff A, King KB, Carpenter RD, Ferguson VL (2018) A new open-source tool for measuring 3D osteocyte lacunar geometries from confocal laser scanning microscopy reveals age-related changes to lacunar size and shape in cortical mouse bone. Bone 110:115–127

    Article  Google Scholar 

  • Hu L, Yin C, Zhao F, Ali A, Ma J, Qian A (2018) Mesenchymal stem cells: cell fate decision to osteoblast or adipocyte and application in osteoporosis treatment. Int J Mol Sci 19:360

    Article  Google Scholar 

  • Hunter RL, Agnew AM (2016) Intraskeletal variation in human cortical osteocyte lacunar density: implications for bone quality assessment. Bone Rep 5:252–261

    Article  Google Scholar 

  • Javaheri B, Pitsillides AA (2019) Ageing and mechanoadaptive responsiveness of bone. Curr Osteoporos Rep 17:560–569

    Article  Google Scholar 

  • Jiang Y, Mishima H, Sakai S, Liu YK, Ohyabu Y, Uemura T (2008) Gene expression analysis of major lineage-defining factors in human bone marrow cells: effect of ageing, gender, and age-related disorders. J Orthop Res 26:910–917

    Article  Google Scholar 

  • Jilka RL, O’Brien CA (2016) The role of osteocytes in age-related bone loss. Curr Osteoporos Rep 14(1):16–25. https://doi.org/10.1007/s11914-016-0297-0

    Article  Google Scholar 

  • Jilka RL, O’Brien CA, Bartell SM, Weinstein RS, Manolagas SC (2010) Continuous elevation of PTH increases the number of osteoblasts via both osteoclast-dependent and -independent mechanisms. J Bone Miner Res 25(11):2427–2437. https://doi.org/10.1002/jbmr.145

    Article  Google Scholar 

  • Khosla S, Farr JN, Kirkland JL (2018) Inhibiting cellular senescence: a new therapeutic paradigm for age-related osteoporosis. J Clin Endocrinol Metab 103:1282–1290

    Article  Google Scholar 

  • Kim HJ, Ohk B, Kang WY, Seong SJ, Suk K, Lim MS, Kim SY, Yoon YR (2016) Deficiency of Lipocalin-2 promotes proliferation and differentiation of osteoclast precursors via regulation of c-Fms expression and nuclear factor-kappa B activation. J Bone Metab 23:8–15

    Article  Google Scholar 

  • Kim HN, **ong J, MacLeod RS, Iyer S, Fujiwara Y, Cawley KM, Han L, He Y, Thostenson JD, Ferreira E, Jilka RL, Zhou D, Almeida M, O’Brien CA (2020) Osteocyte RANKL is required for cortical bone loss with age and is induced by senescence. JCI Insight 5

    Google Scholar 

  • Komori T (2016) Cell death in chondrocytes, osteoblasts, and osteocytes. Int J Mol Sci 17(12):2045

    Article  Google Scholar 

  • Li CJ, Cheng P, Liang MK, Chen YS, Lu Q, Wang JY, **a ZY, Zhou HD, Cao X, **e H et al (2015) MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. J Clin Investig 125:1509–1522

    Article  Google Scholar 

  • Li H, Li P, Xu S, Li Y, Dekker JD, Li B, Fan Y, Zhang Z, Hong Y, Yang G et al (2017) FOXP1 controls mesenchymal stem cell commitment and senescence during skeletal ageing. J Clin Investig 127:1241–1253

    Article  Google Scholar 

  • Luo X, Fu Y, Loza AJ, Murali B, Leahy KM, Ruhland MK et al (2016) Stromal-initiated changes in the bone promote metastatic niche development. Cell Rep 14(1):82–92

    Article  Google Scholar 

  • Ma YL, Cain RL, Halladay DL, Yang X, Zeng Q, Miles RR et al (2001) Catabolic effects of continuous human PTH (1--38) in vivo is associated with sustained stimulation of RANKL and inhibition of osteoprotegerin and gene-associated bone formation. Endocrinology 142(9):4047–4054. https://doi.org/10.1210/endo.142.9.8356

    Article  Google Scholar 

  • Makhluf HA, Mueller SM, Mizuno S, Glowacki J (2000) Age-related decline in osteoprotegerin expression by human bone marrow cells cultured in three-dimensional collagen sponges. Biochem Biophys Res Commun 268:669–672

    Article  Google Scholar 

  • Manolagas SC, Parfitt AM (2010) What old means to bone. Trends Endocrinol Metab 21:369–374

    Article  Google Scholar 

  • Maruotti N, Corrado A, Neve A, Cantatore FP (2013) Systemic effects of Wnt signaling. J Cell Physiol 228:1428–1432

    Article  Google Scholar 

  • Milovanovic P, Busse B (2019) Inter-site variability of the human osteocyte lacunar network: implications for bone quality. Curr Osteoporos Rep 17:105–115

    Article  Google Scholar 

  • Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, Bonewald LF, Kodama T, Wutz A, Wagner EF et al (2011) Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17:1231–1234

    Article  Google Scholar 

  • Ominsky MS, Niu QT, Li C, Li X, Ke HZ (2014) Tissue-level mechanisms responsible for the increase in bone formation and bone volume by sclerostin antibody. J Bone Miner Res 29(6):1424–1430

    Article  Google Scholar 

  • Onal M, Galli C, Fu Q, **ong J, Weinstein RS, Manolagas SC, O’Brien CA (2012) The RANKL distal control region is required for the increase in RANKL expression, but not the bone loss, associated with hyperparathyroidism or lactation in adult mice. Mol Endocrinol 26(2):341–348. https://doi.org/10.1210/me.2011-1149

    Article  Google Scholar 

  • Ota K, Quint P, Ruan M, Pederson L, Westendorf JJ, Khosla S et al (2013) Sclerostin is expressed in osteoclasts from aged mice and reduces osteoclast-mediated stimulation of mineralization. J Cell Biochem 114(8):1901–1907

    Article  Google Scholar 

  • Paccou J, Penel G, Chauveau C, Cortet B, Hardouin P (2019) Marrow adiposity and bone: review of clinical implications. Bone 118:8–15

    Article  Google Scholar 

  • Pan BL, Tong ZW, Li SD, Wu L, Liao JL, Yang YX et al (2018) Decreased microRNA-182-5p helps alendronate promote osteoblast proliferation and differentiation in osteoporosis via the Rap1/MAPK pathway. Biosci Rep 38(6):BSR20180696. https://doi.org/10.1042/bsr20180696

    Article  Google Scholar 

  • Park JH, Lee NK, Lee SY (2017) Current understanding of RANK signaling in osteoclast differentiation and maturation. Mol Cells 40(10):706–713. https://doi.org/10.14348/molcells.2017.0225

    Google Scholar 

  • Piemontese M, Almeida M, Robling AG, Kim HN, **ong J, Thostenson JD, Weinstein RS, Manolagas SC, O’Brien CA, Jilka RL (2017) Old age causes de novo intracortical bone remodeling and porosity in mice. JCI Insight 2:93771

    Article  Google Scholar 

  • Pinzone JJ, Hall BM, Thudi NK, Vonau M, Qiang YW, Rosol TJ, Shaughnessy JD Jr (2009) The role of Dickkopf-1 in bone development, homeostasis, and disease. Blood 113(3):517–525. https://doi.org/10.1182/blood-2008-03-145169

    Article  Google Scholar 

  • Qadir A, Liang S, Wu Z, Chen Z, Hu L, Qian A (2020) Senile osteoporosis: the involvement of differentiation and senescence of bone marrow stromal cells. Int J Mol Sci 21:349

    Article  Google Scholar 

  • Ramanadham S, Yarasheski KE, Silva MJ, Wohltmann M, Novack DV, Christiansen B, Tu X, Zhang S, Lei X, Turk J (2008) Age-related changes in bone morphology are accelerated in group VIA phospholipase A2 (iPLA2beta)-null mice. Am J Pathol 172:868–881

    Article  Google Scholar 

  • Rauner M, Sipos W, Pietschmann P (2008) Age-dependent Wnt gene expression in bone and during the course of osteoblast differentiation. Age (Dordr) 30:273–282

    Article  Google Scholar 

  • Saedi A, Stupka N, Duque G (2020) Pathogenesis of osteoporosis. Bone regulators and osteoporosis therapy. Springer, Cham, pp 353–367

    Book  Google Scholar 

  • Saini V, Marengi DA, Barry KJ, Fulzele KS, Heiden E, Liu X et al (2013) Parathyroid hormone (PTH)/PTH-related peptide type 1 receptor (PPR) signaling in osteocytes regulates anabolic and catabolic skeletal responses to PTH. J Biol Chem 288(28):20122–20134. https://doi.org/10.1074/jbc.M112.441360

    Article  Google Scholar 

  • Sen B, **e Z, Case N, Thompson WR, Uzer G, Styner M, Rubin J (2014) mTORC2 regulates mechanically induced cytoskeletal reorganization and lineage selection in marrow-derived mesenchymal stem cells. J Bone Miner Res 29:78–89

    Article  Google Scholar 

  • Sharma R, Callaway D, Vanegas D et al (2014) Caspase-2 maintains bone homeostasis by inducing apoptosis of oxidatively-damaged osteoclasts. PLoS One 9(4):e93696

    Article  Google Scholar 

  • Shi JH, Sun SC (2018) Tumor necrosis factor receptor-associated factor regulation of nuclear factor kappaB and mitogen-activated protein kinase pathways. Front Immunol 9:1849

    Article  Google Scholar 

  • Shulman LP (2009) Androgens and menopause. Minerva Ginecol 61(6):491–497

    Google Scholar 

  • Stenderup K et al (2003) Ageing is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33:919–926

    Article  Google Scholar 

  • Stevens JR, Miranda-Carboni GA, Singer MA, Brugger SM, Lyons KM, Lane TF (2010) Wnt10b deficiency results in age-dependent loss of bone mass and progressive reduction of mesenchymal progenitor cells. J Bone Miner Res 25:2138–2147

    Article  Google Scholar 

  • Su N, Yang J, **e Y, Du X, Chen H, Zhou H, Chen L (2019) Bone function, dysfunction and its role in diseases including critical illness. Int J Biol Sci 15:776–787

    Article  Google Scholar 

  • Sun YX, Xu AH, Yang Y, Li J (2015) Role of Nrf2 in bone metabolism. J Biomed Sci 22:101

    Article  Google Scholar 

  • Tan EM, Li L, Indran IR, Chew N, Yong EL (2017) TRAF6 mediates suppression of osteoclastogenesis and prevention of ovariectomy-induced bone loss by a novel prenylflavonoid. J Bone Miner Res 32(4):846–860. https://doi.org/10.1002/jbmr.3031

    Article  Google Scholar 

  • Tiede-Lewis LM, **e Y, Hulbert MA, Campos R, Dallas MR, Dusevich V, Bonewald LF, Dallas SL (2017) Degeneration of the osteocyte network in the C57BL/6 mouse model of ageing. Ageing (Albany NY) 9:2190–2208

    Google Scholar 

  • Tong X, Malo MKH, Burton IS, Jurvelin JS, Isaksson H, Kroger H (2017) Histomorphometric and osteocytic characteristics of cortical bone in male subtrochanteric femoral shaft. J Anat 231:708–717

    Article  Google Scholar 

  • Veronese N, Kolk H, Maggi S (2021) Epidemiology of fragility fractures and social impact. In: Falaschi P, Marsh D (eds) Orthogeriatrics: the management of older patients with fragility fractures. Springer, Cham (CH), pp 19–34

    Chapter  Google Scholar 

  • Wei Y, Sun Y (2018) Ageing of the bone. Ageing Ageing-Related Dis:189–197

    Google Scholar 

  • Wesche H, Gao X, Li X, Kirschning CJ, Stark GR, Cao Z (1999) IRAK-M is a novel member of the Pelle/interleukin-1 receptor-associated kinase (IRAK) family. J Biol Chem 274(27):19403–19410. https://doi.org/10.1074/jbc.274.27.19403

    Article  Google Scholar 

  • Westendorf JJ, Kahler RA, Schroeder TM (2004) Wnt signaling in osteoblasts and bone diseases. Gene 341:19–39. https://doi.org/10.1016/j.gene.2004.06.044

    Article  Google Scholar 

  • Yamashita T, Takahashi N, Udagawa N (2012) New roles of osteoblasts involved in osteoclast differentiation. World J Orthop 3(11):175–181. https://doi.org/10.5312/wjo.v3.i11.175

    Article  Google Scholar 

  • Yan T, Riggs BL, Boyle WJ, Khosla S (2001) Regulation of osteoclastogenesis and RANK expression by TGF-beta1. J Cell Biochem 83(2):320–325

    Article  Google Scholar 

  • Zhang X, Zhao G, Zhang Y, Wang J, Wang Y, Cheng L, Sun M, Rui Y (2018) Activation of JNK signaling in osteoblasts is inversely correlated with collagen synthesis in age-related osteoporosis. Biochem Biophys Res Commun 504:771–776

    Article  Google Scholar 

  • Zhang C, Xu S, Zhang S, Liu M, Du H, Sun R, **g B, Sun Y (2019) Ageing characteristics of bone indicated by transcriptomic and exosomal proteomic analysis of cortical bone cells. J Orthop Surg Res 14:129

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Ionel Tamba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cardoneanu, A., Rezus, C., Tamba, B.I., Rezus, E. (2023). Bone Cells Metabolic Changes Induced by Ageing. In: Harris, J.R., Korolchuk, V.I. (eds) Biochemistry and Cell Biology of Ageing: Part IV, Clinical Science. Subcellular Biochemistry, vol 103. Springer, Cham. https://doi.org/10.1007/978-3-031-26576-1_2

Download citation

Publish with us

Policies and ethics

Navigation