Factorized Structured Regression for Large-Scale Varying Coefficient Models

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2022)

Abstract

Recommender Systems (RS) pervade many aspects of our everyday digital life. Proposed to work at scale, state-of-the-art RS allow the modeling of thousands of interactions and facilitate highly individualized recommendations. Conceptually, many RS can be viewed as instances of statistical regression models that incorporate complex feature effects and potentially non-Gaussian outcomes. Such structured regression models, including time-aware varying coefficients models, are, however, limited in their applicability to categorical effects and inclusion of a large number of interactions. Here, we propose Factorized Structured Regression (FaStR) for scalable varying coefficient models. FaStR overcomes limitations of general regression models for large-scale data by combining structured additive regression and factorization approaches in a neural network-based model implementation. This fusion provides a scalable framework for the estimation of statistical models in previously infeasible data settings. Empirical results confirm that the estimation of varying coefficients of our approach is on par with state-of-the-art regression techniques, while scaling notably better and also being competitive with other time-aware RS in terms of prediction performance. We illustrate FaStR’s performance and interpretability on a large-scale behavioral study with smartphone user data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2016), pp. 265–283 (2016)

    Google Scholar 

  2. Al-Hadi, I., Sharef, N.M., Sulaiman, M.N., Mustapha, N.: Review of the temporal recommendation system with matrix factorization. Int. J. Innov. Comput. Inf. Control 13(5), 1579–1594 (2017)

    Google Scholar 

  3. Baltrunas, L., Ricci, F.: Experimental evaluation of context-dependent collaborative filtering using item splitting. User Model. User-Adap. Inter. 24, 7–34 (2013). https://doi.org/10.1007/s11257-012-9137-9

  4. Blondel, M., Fu**o, A., Ueda, N., Ishihata, M.: Higher-order factorization machines. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29. Curran Associates, Inc. (2016). https://doi.org/10.5555/3157382.3157473

  5. Campos, P.G., Díez, F., Cantador, I.: Time-aware recommender systems: a comprehensive survey and analysis of existing evaluation protocols. User Model. User-Adap. Inter. 24, 67–119 (2013). https://doi.org/10.1007/s11257-012-9136-x

  6. Chen, T., Yin, H., Nguyen, Q.V.H., Peng, W.C., Li, X., Zhou, X.: Sequence-aware factorization machines for temporal predictive analytics. In: 2020 IEEE 36th International Conference on Data Engineering (ICDE), pp. 1405–1416. IEEE (2020). https://doi.org/10.1109/ICDE48307.2020.00125

  7. Chua, F.C.T., Oentaryo, R.J., Lim, E.P.: Modeling temporal adoptions using dynamic matrix factorization. In: 2013 IEEE 13th International Conference on Data Mining, pp. 91–100 (2013). https://doi.org/10.1109/ICDM.2013.25

  8. Condli, M.K., Lewis, D.D., Madigan, D., Posse, C.: Bayesian mixed-effects models for recommender systems. In: ACM SIGIR, vol. 99 (1999)

    Google Scholar 

  9. Currie, I.D., Durban, M., Eilers, P.H.: Generalized linear array models with applications to multidimensional smoothing. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 68(2), 259–280 (2006). https://doi.org/10.1111/j.1467-9868.2006.00543.x

    Article  MathSciNet  MATH  Google Scholar 

  10. Guo, Y., Su, Y., Yang, Z., Zhang, A.: Explainable recommendation systems by generalized additive models with manifest and latent interactions (2020)

    Google Scholar 

  11. Harper, F.M., Konstan, J.A.: The MovieLens datasets: history and context. ACM Trans. Interact. Intell. Syst. (TIIS) 5(4), 1–19 (2015). https://doi.org/10.1145/2827872

    Article  Google Scholar 

  12. Hastie, T., Tibshirani, R.: Varying-coefficient models. J. Roy. Stat. Soc.: Ser. B (Methodol.) 55(4), 757–779 (1993). https://doi.org/10.1111/j.2517-6161.1993.tb01939.x

    Article  MathSciNet  MATH  Google Scholar 

  13. Imaizumi, M., Hayashi, K.: Tensor decomposition with smoothness. In: International Conference on Machine Learning, pp. 1597–1606. PMLR (2017). https://doi.org/10.5555/3305381.3305546

  14. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 426–434 (2008). https://doi.org/10.1145/1401890.1401944

  15. Koren, Y.: Collaborative filtering with temporal dynamics. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 447–456 (2009). https://doi.org/10.1145/1721654.1721677

  16. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009). https://doi.org/10.1109/MC.2009.263

    Article  Google Scholar 

  17. Nelder, J.A., Wedderburn, R.W.: Generalized linear models. J. R. Stat. Soc. Set. A (Gen.) 135(3), 370–384 (1972). https://doi.org/10.2307/2344614

    Article  Google Scholar 

  18. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2021)

    Google Scholar 

  19. Rendle, S.: Factorization machines. In: 2010 IEEE International Conference on Data Mining, pp. 995–1000. IEEE (2010). https://doi.org/10.1109/ICDM.2010.127

  20. Rendle, S., Krichene, W., Zhang, L., Anderson, J.: Neural collaborative filtering vs. matrix factorization revisited. In: Fourteenth ACM Conference on Recommender Systems, pp. 240–248 (2020). https://doi.org/10.1145/3383313.3412488

  21. Rendle, S., Zhang, L., Koren, Y.: On the difficulty of evaluating baselines: a study on recommender systems. ar**v preprint ar**v:1905.01395 (2019). https://doi.org/10.48550/ARXIV.1905.01395

  22. Rügamer, D., Kolb, C., Klein, N.: Semi-structured deep distributional regression: a combination of additive models and deep learning. ar**v preprint ar**v:2002.05777 (2020). https://doi.org/10.48550/ARXIV.2002.05777

  23. Stachl, C., et al.: Predicting personality from patterns of behavior collected with smartphones. Proc. Natl. Acad. Sci. 117, 17680–17687 (2020). https://doi.org/10.1073/pnas.1920484117

    Article  Google Scholar 

  24. Thorat, P.B., Goudar, R., Barve, S.: Survey on collaborative filtering, content-based filtering and hybrid recommendation system. Int. J. Comput. Appl. 110(4), 31–36 (2015). https://doi.org/10.5120/19308-0760

    Article  Google Scholar 

  25. Wood, S.N.: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. (B) 73(1), 3–36 (2011). https://doi.org/10.1111/j.1467-9868.2010.00749.x

    Article  MathSciNet  MATH  Google Scholar 

  26. Wood, S.N.: Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC, New York (2017). https://doi.org/10.1201/9781315370279

  27. Wood, S.N.: Rejoinder on: Inference and computation with Generalized Additive Models and their extensions. TEST 29(2), 354–358 (2020). https://doi.org/10.1007/s11749-020-00716-0

    Article  MathSciNet  MATH  Google Scholar 

  28. Wood, S.N., Li, Z., Shaddick, G., Augustin, N.H.: Generalized additive models for GigaData: modeling the u.k. black smoke network daily data. J. Am. Stat. Assoc. 112(519), 1199–1210 (2017). https://doi.org/10.1080/01621459.2016.1195744

  29. Wu, C., Lian, D., Ge, Y., Zhu, Z., Chen, E., Yuan, S.: Fight fire with fire: towards robust recommender systems via adversarial poisoning training. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1074–1083, SIGIR 2021. Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3404835.3462914

  30. Yu, H.F., Rao, N., Dhillon, I.S.: Temporal regularized matrix factorization for high-dimensional time series prediction. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29. Curran Associates, Inc. (2016)

    Google Scholar 

  31. Zhang, X., Zhou, Y., Ma, Y., Chen, B.C., Zhang, L., Agarwal, D.: GLMix: generalized linear mixed models for large-scale response prediction. In: KDD 2016, pp. 363–372. Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2939672.2939684

  32. Zhang, Y., Bi, X., Tang, N., Qu, A.: Dynamic tensor recommender systems. J. Mach. Learn. Res. 22(65), 1–35 (2021). https://doi.org/10.11159/icsta19.09

  33. Zhao, W.X., et al.: RecBole: towards a unified, comprehensive and efficient framework for recommendation algorithms (2020). https://doi.org/10.1145/3459637.3482016

Download references

Acknowledgement

This work has been partially supported by the German Federal Ministry of Education and Research (BMBF) under Grant No. 01IS18036A. We also thank four anonymous reviewers for their helpful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Rügamer .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 325 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rügamer, D. et al. (2023). Factorized Structured Regression for Large-Scale Varying Coefficient Models. In: Amini, MR., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2022. Lecture Notes in Computer Science(), vol 13717. Springer, Cham. https://doi.org/10.1007/978-3-031-26419-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26419-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26418-4

  • Online ISBN: 978-3-031-26419-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation