Tree Bark as a Bioindicator of Atmospheric Contamination by Heavy Metals According to Vehicular Traffic Intensity in El Tambo, Huancayo, Peru

  • Conference paper
  • First Online:
Advances in Environmental Sustainability (ICOAER 2022)

Abstract

Tree bark is an excellent bioindicator of atmospheric heavy metal contamination. This study aims to determine heavy metals from tree bark in El Tambo, Huancayo, Peru. Salix babylonica, Populus nigra, Senna multiglandulosa, and Schinus molle bark samples were taken in 2021 and analyzed through Inductively Coupled Plasma Optical Emission Spectroscopy. Results show heavy metals concentrations (mg.kg−1) of Zn (195.92 ± 125.97) > Pb (24.45 ± 15.57) > Cu (23.39 ± 11.01) > Cr (2.43 ± 1.13) > Cd (1.77 ± 3.06) > Ni (1.01 ± 0.70). The highest contamination levels were by Zn, Pb, and Cu, and the lowest by Cr, Cd, and Ni. The average concentration due to vehicular traffic intensity was Zn > Cu > Pb > Cr > Cd > Ni. Cr reveals higher concentration at high traffic levels; Cu, Ni, Pb, and Zn at moderate, and Cd at low levels. Schinus molle showed the highest concentration of Ni, Populus nigra of Cr, and Salix babylonica of Zn and Cd. The lowest concentrations of all metals were found in Senna multiglandulosa. This and Salix babylonica are bioindicators of Pb, Cr, Cd, Cu, Ni, and Zn, the first report for the world on bark in Fabaceae and Salicaceae species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Moreira, T.C.L., Amato-Lourenço, L.F., da Silva, G.T., Saldiva de André, C.D., de André, P.A., Barrozo, L.V., Singer, J.M., Saldiva, P.H.N., Saiki, M., Locosselli, G.M.: The Use of Tree Barks to Monitor Traffic Related Air Pollution: A Case Study in São Paulo–Brazil. Front. Environ. Sci. 6, 72 (2018).

    Article  Google Scholar 

  2. Ejidike, I.P., Onianwa, P.C.: Assessment of Trace Metals Concentration in Tree Barks as Indicator of Atmospheric Pollution within Ibadan City, South-West, Nigeria. J. Anal. Methods Chem. 2015, 243601 (2015).

    Google Scholar 

  3. Onder, S., Dursun, S.: Air borne heavy metal pollution of Cedrus libani (A. Rich.) in the city centre of Konya (Turkey). Atmos. Environ. 40, 1122–1133 (2006).

    Article  CAS  Google Scholar 

  4. Vieira, J., Matos, P., Mexia, T., Silva, P., Lopes, N., Freitas, C., Correia, O., Santos-Reis, M., Branquinho, C., Pinho, P.: Green spaces are not all the same for the provision of air purification and climate regulation services: The case of urban parks. Environ. Res. 160, 306–313 (2018).

    Article  CAS  Google Scholar 

  5. Conde, A.: Efectos nocivos de la contaminación ambiental sobre la embarazada. Rev. Cuba. Hig. Epidemiol. 51, 226–238 (2013).

    Google Scholar 

  6. Baslar, S., Dogan, Y., Bag, H., Elci, A.: Trace element biomonitoring by needles of Pinus brutia Ten. from western Anatolia, Turkey. Fresenius Environ. Bull. 12, 450–453 (2003).

    CAS  Google Scholar 

  7. Kaya, Gökçe, Yaman, M.: Trace Metal Concentrations in Cupressaceae leaves as biomonitors of environmental pollution. Trace Elem. Electrolytes. 25, 156–164 (2008).

    Article  CAS  Google Scholar 

  8. Lijteroff, R., Lima, L., Prieri, B.: Uso de líquenes como bioindicadores de contaminación atmosférica en la ciudad de San Luis, Argentina. Rev. Int. Contam. Ambient. 25, 111–120 (2009).

    CAS  Google Scholar 

  9. Gadzala-Kopciuch, R., Berecka, B., Bartoszewicz, J., Buszewski, B.: Some considerations about bioindicators in environmental monitoring. Pol. J. Environ. Stud. 13, (2004).

    Google Scholar 

  10. Karaaslan, N.M., Yaman, M.: Determination of Nickel and Chromium in Pinus Nigra L., Cedrus Libani, and Cupressus Arizonica Leaves to Monitor the Effects of Pollution in Elazig (Turkey). Instrum. Sci. Technol. 41, 335–348 (2013).

    Article  CAS  Google Scholar 

  11. Önder, S., Dursun, S., Gezgin, S., Demirbaş, A.: Determination of heavy metal pollution in grass and soil of city centre green areas (Konya, Turkey). Pol. J. Environ. Stud. 16, 145–154 (2007).

    Google Scholar 

  12. El-Khatib, A.A., Barakat, N.A., Youssef, N.A., Samir, N.A.: Bioaccumulation of heavy metals air pollutants by urban trees. Int. J. Phytoremediation. 22, 210–222 (2020).

    Article  CAS  Google Scholar 

  13. Chrabąszcz, M., Mróz, L.: Tree Bark, a valuable source of information on air quality. Pol. J. Environ. Stud. 26, 453–466 (2017).

    Article  Google Scholar 

  14. Catinon, M., Ayrault, S., Boudouma, O., Asta, J., Tissut, M., Ravanel, P.: Atmospheric element deposit on tree barks : the opposite effects of rain and transpiration. Ecol. Indic. 14, 170 (2012).

    Article  CAS  Google Scholar 

  15. Guéguen, F., Stille, P., Lahd Geagea, M., Boutin, R.: Atmospheric pollution in an urban environment by tree bark biomonitoring--part I: trace element analysis. Chemosphere. 86, 1013–1019 (2012).

    Google Scholar 

  16. Nabulo, G., Oryem Origa, H., Nasinyama, G.W., Cole, D.: Assessment of Zn, Cu, Pb and Ni contamination in wetland soils and plants in the Lake Victoria basin. Int. J. Environ. Sci. Technol. 5, 65–74 (2008).

    Article  CAS  Google Scholar 

  17. Nawrot, N., Wojciechowska, E., Rezania, S., Walkusz-Miotk, J., Pazdro, K.: The effects of urban vehicle traffic on heavy metal contamination in road swee** waste and bottom sediments of retention tanks. Sci. Total Environ. 749, 141511 (2020).

    Article  CAS  Google Scholar 

  18. Wang, W., Feng, L., Zheng, T., Liu, Y.: The sustainability of ecotourism stakeholders in ecologically fragile areas: Implications for cleaner production. J. Clean. Prod. 279, 123606 (2021).

    Article  Google Scholar 

  19. Zgłobicki, W., Telecka, M., Skupiński, S.: Assessment of short-term changes in street dust pollution with heavy metals in Lublin (E Poland)-levels, sources and risks. Environ. Sci. Pollut. Res. Int. 26, 35049–35060 (2019).

    Article  Google Scholar 

  20. Suárez-Salas, L., Álvarez Tolentino, D., Bendezú, Y., Pomalaya, J.: Caracterización química del material particulado atmosférico del centro urbano de Huancayo, Perú. Rev. Soc. Quím. Perú. 83, 187–199 (2017).

    Google Scholar 

  21. De la Cruz Lezama, M.: Concentración de contaminantes del aire generado por las fuentes móviles en la ciudad de Huancayo 2012. Univ. Nac. Cent. Perú. (2015).

    Google Scholar 

  22. Xue, W., Jiang, Y., Shang, X., Zou, J.: Characterisation of early responses in lead accumulation and localization of Salix babylonica L. roots. BMC Plant Biol. 20, 296 (2020).

    Article  CAS  Google Scholar 

  23. Chandra, R., Kang, H.: Mixed heavy metal stress on photosynthesis, transpiration rate, and chlorophyll content in poplar hybrids. For. Sci. Technol. 12, 55–61 (2016).

    Google Scholar 

  24. He, J., Ma, C., Ma, Y., Li, H., Kang, J., Liu, T., Polle, A., Peng, C., Luo, Z.-B.: Cadmium tolerance in six poplar species. Environ. Sci. Pollut. Res. 20, 163–174 (2013).

    Article  CAS  Google Scholar 

  25. Elobeid, M., Göbel, C., Feussner, I., Polle, A.: Cadmium interferes with auxin physiology and lignification in poplar. J. Exp. Bot. 63, 1413–1421 (2012).

    Article  CAS  Google Scholar 

  26. Laureysens, I., Blust, R., De Temmerman, L., Lemmens, C., Ceulemans, R.: Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture: I. Seasonal variation in leaf, wood and bark concentrations. Environ. Pollut. Barking Essex 1987. 131, 485–494 (2004).

    Article  Google Scholar 

  27. Alcala, J., Ortíz, J., Hernandez, A., Filippini, M., Martínez Carretero, E., Diaz-Flores, P.: Capacity of Two Vegetative Species of Heavy Metal Accumulation. Rev. Fac. Cienc. Agrar. 50, 123–139 (2018).

    Google Scholar 

  28. Yarupaitán Galván, G., Albán Castillo, J.: Fanerógamas de la provincia de Huancayo, Perú. Rev. Peru. Biol. 11, 193–202 (2004).

    Article  Google Scholar 

  29. Baltazar, H., Baltazar, D., Baltazar, N., Alvarez, D.: Primer registro de Acanthoscelides obtectus (Coleoptera: Chrysomelidae: Bruchinae) en Senna multiglandulosa (Fabaceae) de la región andina central del Perú. Cienc. Tecnol. Agropecu. 22, e2290–e2290 (2021).

    Article  Google Scholar 

  30. Franco, W., Peñafiel, M., Cerón, C., Freire, E.: Biodiversidad productiva y asociada en el Valle Interandino Norte del Ecuador. Bioagro. 28, 181–192 (2016).

    Google Scholar 

  31. Singh, S., Singh, S.K., Yadav, A.: A Review on Cassia species: Pharmacological, Traditional and Medicinal Aspects in Various Countries. Am. J. Phytomedicine Clin. Ther. 1, 291–312 (2013).

    Google Scholar 

  32. Evangelou, M.W.H., Ebel, M., Schaeffer, A.: Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere. 68, 989–1003 (2007).

    Article  CAS  Google Scholar 

  33. Reeves, R.D., Baker, A.J.M., Jaffré, T., Erskine, P.D., Echevarria, G., van der Ent, A.: A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol. 218, 407–411 (2018).

    Article  Google Scholar 

  34. Udiba, U.U., Antai, E.E., Akpan, E.R.: Assessment of Lead (Pb) Remediation Potential of Senna obtusifolia in Dareta Village, Zamfara, Nigeria. J. Health Pollut. 10, 200301 (2020).

    Article  Google Scholar 

  35. U. S. Department of Health & Human: Agency for Toxic Substances and Disease Registry, https://www.atsdr.cdc.gov/index.html, last accessed 2021/11/13.

  36. Bokowski, L.V.V., Sobrinho, R.B., Armijo, C.J.V., Dani, C., Henriques, J.A.P., Funchal, C.: Method validation for determination of metals in Vitis labrusca L. grapevine leaf extracts by inductively coupled plasma mass spectrometry (ICP-MS). An. Acad. Bras. Ciênc. 88, 2247–2255 (2016).

    Article  CAS  Google Scholar 

  37. Cruz, A.R.H.D.L., Ayuque, R.F.O., Cruz, R.W.H.D.L., López-Gonzales, J.L., Gioda, A.: Air quality biomonitoring of trace elements in the metropolitan area of Huancayo, Peru using transplanted Tillandsia capillaris as a biomonitor. An. Acad. Bras. Cienc. 92, e20180813 (2020).

    Article  Google Scholar 

  38. INEI: Censos Nacionales 2017: XII de Población, VII de Vivienda y III de Comunidades Indígenas, https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1539/libro.pdf, last accessed 2021/04/17.

  39. Corilla Huaman, C.P.: Propuesta de mejora del nivel de servicio del tránsito vehicular en la Av. Huancavelica – tramo Av. 13 de noviembre y Paseo La Breña en la ciudad de Huancayo. Univ. Cont. (2018).

    Google Scholar 

  40. Garay Flores, R.K.: Análisis de la congestión vehicular y peatonal en la ciudad de Huancayo. Univ. Nac. Ing. (2015).

    Google Scholar 

  41. SINIA: Sistema Nacional de Informaciòn Ambiental – MINAM, https://sinia.minam.gob.pe/indicador/966, (2022).

  42. Garay Flores, R.K.: Análisis de la congestión vehicular y peatonal en la ciudad de Huancayo. Univ. Nac. Ing. (2015).

    Google Scholar 

  43. Hilario Roman, N.: Emisiones contaminantes de vehículos del distrito de Huancayo. Univ. Nac. Cent. Perú. (2017).

    Google Scholar 

  44. Machado, A., García, N., García, C., Acosta, L., Córdova, A., Linares, M., Giraldoth, D., Velásquez, H.: Contaminación por metales (Pb, Zn, Ni y Cr) en aire, sedimentos viales y suelo en una zona de alto tráfico vehicular. Rev. Int. Contam. Ambient. 24, 171–182 (2008).

    CAS  Google Scholar 

  45. Odukoya, O.O., Arowolo, T.A., Bamgbose, O.: Pb, Zn, and Cu levels in tree barks as indicator of atmospheric pollution. Environ. Int. 26, 11–16 (2000).

    Article  CAS  Google Scholar 

  46. Jeong, H., Ra, K.: Characteristics of Potentially Toxic Elements, Risk Assessments, and Isotopic Compositions (Cu-Zn-Pb) in the PM10 Fraction of Road Dust in Busan, South Korea. Atmosphere. 12, 1229 (2021).

    CAS  Google Scholar 

  47. Zafra-Mejía, C.A., Luengas-Pinzón, E.C., Temprano-González, J.: Influencia del tráfico en la acumulación de metales pesados sobre vías urbanas: Torrelavega (España)-Soacha (Colombia). Rev. Fac. Ing. Univ. Antioquia. 146–160 (2013).

    Google Scholar 

  48. Alcalá, J., Rodríguez Ortíz, J.C., Hernández Montoya, A., Díaz Flores, P.E., Filippini, M.F., Martínez Carretero, E.: Cortezas de Prosopis laevigata (Fabaceae) y Schinus molle (Anacardiaceae) como bioindicadoras de contaminación por metales pesados. Rev. Fac. Cienc. Agrar. (2015).

    Google Scholar 

  49. Barbes, L., Barbulescu, A., Radulescu, C., Stihi, C., Chelarescu, E.: Determination of Heavy Metals in Leaves and Bark of Populus Nigra L. by Atomic Absorption Spectrometry. Romanian Rep. Phys. 66, (2014).

    Google Scholar 

  50. Sujatha, K.: Determination of Bioaccumulation of Heavy Metals in Leaves, Bark and in Soils by Atomic Absorption Spectrometry. Int. J. Res. Rev. 6, 90–94 (2019).

    CAS  Google Scholar 

  51. Samara, T., Spanos, I., Platis, P., Papachristou, T.G.: Heavy Metal Retention by Different Forest Species Used for Restoration of Post-Mining Landscapes, N. Greece. Sustainability. 12, 4453 (2020).

    Article  CAS  Google Scholar 

  52. Ugulu, I., Dogan, Y., Baslar, S., Varol, O.: Biomonitoring of trace element accumulation in plants growing at Murat Mountain. Int. J. Environ. Sci. Technol. 9, 527–534 (2012).

    Article  CAS  Google Scholar 

  53. Ci̇ftci̇, H., Er Caliskan, C., Aslanhan, E., Aktoklu, E.: Monitoring of heavy metal pollution by using Populus nigra and Cedrus libani. Sigma J. Eng. Nat. Sci. 39, 367 (2021).

    Google Scholar 

  54. Turkyilmaz, A., Cetin, M., Sevik, H., Isinkaralar, K., Saleh, E.A.A.: Variation of heavy metal accumulation in certain landsca** plants due to traffic density. Environ. Dev. Sustain. 22, 2385–2398 (2020).

    Article  Google Scholar 

  55. Ouyang, J., Li, B., Li, C., Shang, X., Zou, J.: Cadmium Effects on Mineral Accumulation and Selected Physiological and Biochemical Characters of Salix babylonica L. Pol. J. Environ. Stud. 26, 2667–2676 (2017).

    Article  CAS  Google Scholar 

  56. FengLiang, Z., WeiDong, Y.: Review on application of willows (Salix spp.) in remediation of contaminated environment. Acta Agric. Zhejiangensis. 29, 300–306 (2017).

    Google Scholar 

  57. Sociedad Nacional de Minería, Petróleo y Energía: Decreto Supremo N° 021-2007-EM – SNMPE, https://www.snmpe.org.pe/repositorio-legislacion/272-hidrocarburos/4081-decreto-supremo-n-021-2007-em.html, last accessed 2021/11/16.

  58. Tello, V.: Las emisiones de plomo del Complejo Metalúrgico Doe Run y su relación con las infecciones respiratorias agudas de los pobladores de la localidad de Huaynacancha, Distrito de La Oroya – Yauli – Junín – Perú. Rev. Inst. Investig. Fac. Minas Metal. Cienc. Geográficas. 17, (2014).

    Google Scholar 

  59. Romero Ledezma, K.P.: Contaminación por metales pesados. Rev. Científica Cienc. Médica. 12, 45–46 (2009).

    Google Scholar 

  60. Méndez, J.P., Ramírez, C.A.G., Gutiérrez, A.D.R., García, F.P.: Contaminación y fitotoxicidad en plantas por metales pesados provenientes de suelos y agua. 17 (2009).

    Google Scholar 

  61. MINAM, M. del: Decreto Supremo N° 020-2021-MINAM, https://www.gob.pe/institucion/minam/normas-legales/2035448-020-2021-minam, (2021).

  62. Castillo, B., Ruiz, J.O., Manrique, M., Pozo, C.: Contaminación por plaguicidas agrícolas en los campos de cultivos en Cañete (Perú). Repos.-Inst. – UNAH. (2020).

    Google Scholar 

  63. MINAM: Decreto Supremo N°011-2017-MINAM. 4 (2017).

    Google Scholar 

  64. Perelman, P., Faggi, A., Castro, M., Carretero, E.M.: Pollution trends using bark of morus alba in the cities of buenos aires and mendoza (Argentina). Rev. Árvore. 34, 505–511 (2010). https://doi.org/10.1590/S0100-67622010000300014.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

To Hernán Baltazar Castañeda, Ph.D., Research Professor of Universidad Nacional del Centro del Peru (UNCP) for his valuable contribution in the statistical analysis and writing of the manuscript. Many thanks to the Faculty of Forestry and Environmental Sciences of UNCP for granting us access to the Biodiversity and Forest Management Laboratory equipment.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baltazar Sedano, N.M., Schwartz Valverde, A.J., Guerreros Chiri, A.J., Camargo Hinostroza, S.D. (2023). Tree Bark as a Bioindicator of Atmospheric Contamination by Heavy Metals According to Vehicular Traffic Intensity in El Tambo, Huancayo, Peru. In: Anderson, J.T. (eds) Advances in Environmental Sustainability. ICOAER 2022. Springer Proceedings in Earth and Environmental Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-26365-1_1

Download citation

Publish with us

Policies and ethics

Navigation