Molecular Toxicity Mechanism of Plasticizers in the Reservoir

  • Chapter
  • First Online:
Reservoir Ecotoxicology

Abstract

Plasticizers, due to their robustness, flexibility, and low production costs, have broad industrial applications. However, they are released into the reservoir environment because of inappropriate disposal discharge and cause adverse health effects. This chapter mainly focuses on the molecular mechanism of the plasticizers, particularly phthalates (PAEs) and bisphenol A (BPA), when they are exposed to or interacted with organisms. Previously, various studies have reported that plasticizers affect growth development by altering the thyroid and estrogen axis, leading to infertility. Furthermore, these chemicals can disturb reproductive capacity and decrease egg production via reducing steroidogenesis, activating peroxisome proliferator receptors (PPAR), and enhancing oxidative stress levels. In a nutshell, plasticizer pollution in the reservoir should be deeply concerned, and more studies on the adverse health effects of plasticizers on aquatic species are critically needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Yang, C. Chen, Y. Wang, Q. Peng, H. Zhao, D. Guo, Q. Wang, Y. Qian, Mixture toxicity of four commonly used pesticides at different effect levels to the epigeic earthworm, Eisenia fetida. Ecotoxicol. Environ. Saf. 142, 29–39 (2017)

    Article  CAS  PubMed  Google Scholar 

  2. J. Zhou, Z.-H. Cai, K.-Z. **ng, Potential mechanisms of phthalate ester embryotoxicity in the abalone Haliotis diversicolor supertexta. Environ. Pollut. 159, 1114–1122 (2011)

    Article  CAS  PubMed  Google Scholar 

  3. Y. Liu, Z. Chen, J. Shen, Occurrence and removal characteristics of phthalate esters from typical water sources in Northeast China. J. Anal. Methods Chem. 2013, 419349–419349 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  4. J. Mathieu-Denoncourt, S.J. Wallace, S.R. de Solla, V.S. Langlois, Plasticizer endocrine disruption: highlighting developmental and reproductive effects in mammals and non-mammalian aquatic species. Gen. Comp. Endocrinol. 219, 74–88 (2015)

    Article  CAS  PubMed  Google Scholar 

  5. WHO, 3rd ed. Guidelines for Drinking-water Quality (Geneva), (World Health Organization), 1 (2004)

    Google Scholar 

  6. S. Net, S. Rabodonirina, R.B. Sghaier, D. Dumoulin, C. Chbib, I. Tlili, B. Ouddane, Distribution of phthalates, pesticides and drug residues in the dissolved, particulate and sedimentary phases from transboundary rivers (France–Belgium). Sci. Total Environ. 521–522, 152–159 (2015)

    Article  PubMed  Google Scholar 

  7. A. Ohashi, H. Kotera, H. Hori, M. Hibiya, K. Watanabe, K. Murakami, M. Hasegawa, M. Tomita, Y. Hiki, S. Sugiyama, Evaluation of endocrine disrupting activity of plasticizers in polyvinyl chloride tubes by estrogen receptor alpha binding assay. J. Artif. Organs 8, 252 (2005)

    Article  CAS  PubMed  Google Scholar 

  8. H. Liu, K. Cui, F. Zeng, L. Chen, Y. Cheng, H. Li, S. Li, X. Zhou, F. Zhu, G. Ouyang, T. Luan, Z. Zeng, Occurrence and distribution of phthalate esters in riverine sediments from the Pearl River Delta region, South China. Mar. Pollut. Bull. 83, 358–365 (2014)

    Article  CAS  PubMed  Google Scholar 

  9. H.-T. Gao, R. Xu, W.-X. Cao, L.-L. Qian, M. Wang, L. Lu, Q. Xu, S.-Q. Yu, Effects of six priority controlled phthalate esters with long-term low-dose integrated exposure on male reproductive toxicity in rats. Food Chem. Toxicol. 101, 94–104 (2017)

    Article  CAS  PubMed  Google Scholar 

  10. D.-W. Gao, Z.-D. Wen, Phthalate esters in the environment: a critical review of their occurrence, biodegradation, and removal during wastewater treatment processes. Sci. Total Environ. 541, 986–1001 (2016)

    Article  CAS  PubMed  Google Scholar 

  11. N. Hamid, M. Junaid, R. Manzoor, P.-P. Jia, D.-S. Pei, Prioritizing phthalate esters (PAEs) using experimental in vitro/vivo toxicity assays and computational in silico approaches. J. Hazard. Mater. 398, 122851 (2020)

    Article  CAS  PubMed  Google Scholar 

  12. Y.-B. Ma, P.-P. Jia, M. Junaid, L. Yang, C.-J. Lu, D.-S. Pei, Reproductive effects linked to DNA methylation in male zebrafish chronically exposed to environmentally relevant concentrations of di-(2-ethylhexyl) phthalate. Environ. Pollut. 237, 1050–1061 (2018)

    Article  CAS  PubMed  Google Scholar 

  13. G. Latini, Monitoring phthalate exposure in humans. Clin. Chim. Acta 361, 20–29 (2005)

    Article  CAS  PubMed  Google Scholar 

  14. M. Junaid, P.-P. Jia, Y.-M. Tang, W.-X. **ong, H.-Y. Huang, P.R. Strauss, W.-G. Li, D.-S. Pei, Mechanistic toxicity of DEHP at environmentally relevant concentrations (ERCs) and ecological risk assessment in the Three Gorges Reservoir Area, China. Environ. Pollut. 242, 1939–1949 (2018)

    Article  CAS  PubMed  Google Scholar 

  15. J. Berger, D.E. Moller, The mechanisms of action of PPARs. Annu. Rev. Med. 53, 409–435 (2002)

    Article  CAS  PubMed  Google Scholar 

  16. C.H. Hurst, D.J. Waxman, Environmental phthalate monoesters activate pregnane X receptor-mediated transcription. Toxicol. Appl. Pharmacol. 199, 266–274 (2004)

    Article  CAS  PubMed  Google Scholar 

  17. P. Phrakonkham, S. Viengchareun, C. Belloir, M. Lombès, Y. Artur, M.-C. Canivenc-Lavier, Dietary xenoestrogens differentially impair 3T3-L1 preadipocyte differentiation and persistently affect leptin synthesis. J. Steroid Biochem. Mol. Biol. 110, 95–103 (2008)

    Article  CAS  PubMed  Google Scholar 

  18. X. Deng, L. Pan, Y. Cai, Q. **, Transcriptomic changes in the ovaries of scallop Chlamys farreri exposed to benzo[a]pyrene. Genes Genom. 38, 509–518 (2016)

    Article  CAS  Google Scholar 

  19. G. Latini, E. Scoditti, A. Verrotti, C. De Felice, M. Massaro, Peroxisome proliferator-activated receptors as mediators of phthalate-induced effects in the male and female reproductive tract: epidemiological and experimental evidence. PPAR Res. 2008, 359267–359267 (2008)

    Article  PubMed  Google Scholar 

  20. S.Y. Xu, H. Zhang, P.J. He, L.M. Shao, Leaching behaviour of bisphenol A from municipal solid waste under landfill environment. Environ. Technol. 32, 1269–1277 (2011)

    Article  CAS  PubMed  Google Scholar 

  21. S.-K. Tong, H.-J. Hsu, B.-C. Chung, Zebrafish monosex population reveals female dominance in sex determination and earliest events of gonad differentiation. Dev. Biol. 344, 849–856 (2010)

    Article  CAS  PubMed  Google Scholar 

  22. E. Muth-Köhne, K. Westphal-Settele, J. Brückner, S. Konradi, V. Schiller, C. Schäfers, M. Teigeler, M. Fenske, Linking the response of endocrine regulated genes to adverse effects on sex differentiation improves comprehension of aromatase inhibition in a Fish Sexual Development Test. Aquat. Toxicol. 176, 116–127 (2016)

    Article  PubMed  Google Scholar 

  23. Y.-Q. Liang, G.-Y. Huang, S.-S. Liu, J.-L. Zhao, Y.-Y. Yang, X.-W. Chen, F. Tian, Y.-X. Jiang, G.-G. Ying, Long-term exposure to environmentally relevant concentrations of progesterone and norgestrel affects sex differentiation in zebrafish (Danio rerio). Aquat. Toxicol. 160, 172–179 (2015)

    Article  CAS  PubMed  Google Scholar 

  24. Y.-Q. Liang, G.-Y. Huang, G.-G. Ying, S.-S. Liu, Y.-X. Jiang, S. Liu, F.-J. Peng, The effects of progesterone on transcriptional expression profiles of genes associated with hypothalamic–pituitary–gonadal and hypothalamic–pituitary–adrenal axes during the early development of zebrafish (Danio rerio). Chemosphere 128, 199–206 (2015)

    Article  CAS  PubMed  Google Scholar 

  25. A. Ishihara, S. Sawatsubashi, K. Yamauchi, Endocrine disrupting chemicals: interference of thyroid hormone binding to transthyretins and to thyroid hormone receptors. Mol. Cell. Endocrinol. 199, 105–117 (2003)

    Article  CAS  PubMed  Google Scholar 

  26. O. Shen, W. Wu, G. Du, R. Liu, L. Yu, H. Sun, X. Han, Y. Jiang, W. Shi, W. Hu, L. Song, Y. **a, S. Wang, X. Wang, Thyroid disruption by Di-n-butyl phthalate (DBP) and mono-n-butyl phthalate (MBP) in Xenopus laevis. PLoS One 6, e19159–e19159 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. N.S. Gayathri, C.R. Dhanya, A.R. Indu, P.A. Kurup, Changes in some hormones by low doses of di (2-ethyl hexyl) phthalate (DEHP), a commonly used plasticizer in PVC blood storage bags & medical tubing. Indian J. Med. Res. 119, 139–144 (2004)

    CAS  PubMed  Google Scholar 

  28. A. Wenzel, C. Franz, E. Breous, U. Loos, Modulation of iodide uptake by dialkyl phthalate plasticisers in FRTL-5 rat thyroid follicular cells. Mol. Cell. Endocrinol. 244, 63–71 (2005)

    Article  CAS  PubMed  Google Scholar 

  29. S. Imaoka, T. Mori, T. Kinoshita, Bisphenol A causes malformation of the head region in embryos of Xenopus laevis and decreases the expression of the ESR-1 gene mediated by Notch signaling. Biol. Pharm. Bull. 30, 371–374 (2007)

    Article  CAS  PubMed  Google Scholar 

  30. S. Santangeli, F. Maradonna, G. Gioacchini, G. Cobellis, C.C. Piccinetti, L. Dalla Valle, O. Carnevali, BPA-induced deregulation of epigenetic patterns: effects on female zebrafish reproduction. Sci. Rep. 6, 1–11 (2016)

    Article  Google Scholar 

  31. Y. Xu, S. Agrawal, T.J. Cook, G.T. Knipp, Maternal di-(2-ethylhexyl)-phthalate exposure influences essential fatty acid homeostasis in rat placenta. Placenta 29, 962–969 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. C.J. Thompson, S.M. Ross, K.W. Gaido, Di(n-butyl) phthalate impairs cholesterol transport and steroidogenesis in the fetal rat testis through a rapid and reversible mechanism. Endocrinology 145, 1227–1237 (2004)

    Article  CAS  PubMed  Google Scholar 

  33. T.R. Zacharewski, M.D. Meek, J.H. Clemons, Z.F. Wu, M.R. Fielden, J.B. Matthews, Examination of the in vitroandin vivoestrogenic activities of eight commercial phthalate esters. Toxicol. Sci. 46, 282–293 (1998)

    CAS  PubMed  Google Scholar 

  34. Y. Nomura, N. Mitsui, U.K. Bhawal, M. Sawajiri, O. Tooi, T. Takahashi, M. Okazaki, Estrogenic activity of phthalate esters by in vitro VTG assay using primary-cultured Xenopus hepatocytes. Dent. Mater. J. 25, 533–537 (2006)

    Article  CAS  PubMed  Google Scholar 

  35. L.B. Christiansen, K.L. Pedersen, B. Korsgaard, P. Bjerregaard, Estrogenicity of xenobiotics in rainbow trout (Oncorhynchus mykiss) using in vivo synthesis of vitellogenin as a biomarker. Mar. Environ. Res. 46, 137–140 (1998)

    Article  CAS  Google Scholar 

  36. O. Carnevali, L. Tosti, C. Speciale, C. Peng, Y. Zhu, F. Maradonna, DEHP impairs zebrafish reproduction by affecting critical factors in oogenesis. PLoS One 5, e10201–e10201 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  37. G. Levy, I. Lutz, A. Krüger, W. Kloas, Bisphenol A induces feminization in Xenopus laevis tadpoles. Environ. Res. 94, 102–111 (2004)

    Article  CAS  PubMed  Google Scholar 

  38. X. Chen, S. Xu, T. Tan, S.T. Lee, S.H. Cheng, F.W. Lee, S.J. Xu, K.C. Ho, Toxicity and estrogenic endocrine disrupting activity of phthalates and their mixtures. Int. J. Environ. Res. Public Health 11, 3156–3168 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  39. B. Huang, M. Feng, D. Li, Y. Yang, Antagonistic joint toxicity assessment of two current-use phthalates with waterborne copper in liver of Carassius auratus using biochemical biomarkers. Ecotoxicol. Environ. Saf. 116, 107–112 (2015)

    Article  CAS  PubMed  Google Scholar 

  40. X. Chen, H. An, L. Ao, L. Sun, W. Liu, Z. Zhou, Y. Wang, J. Cao, The combined toxicity of dibutyl phthalate and benzo(a)pyrene on the reproductive system of male Sprague Dawley rats in vivo. J. Hazard. Mater. 186, 835–841 (2011)

    Article  CAS  PubMed  Google Scholar 

  41. A. Pradhan, P.E. Olsson, J. Jass, Di(2-ethylhexyl) phthalate and diethyl phthalate disrupt lipid metabolism, reduce fecundity and shortens lifespan of Caenorhabditis elegans. Chemosphere 190, 375–382 (2018)

    Article  CAS  PubMed  Google Scholar 

  42. N. Xu, P. Chen, L. Liu, Y. Zeng, H. Zhou, S. Li, Effects of combined exposure to 17α-ethynylestradiol and dibutyl phthalate on the growth and reproduction of adult male zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 107, 61–70 (2014)

    Article  CAS  PubMed  Google Scholar 

  43. T.V. Madureira, M.J. Rocha, C. Cruzeiro, I. Rodrigues, R.A.F. Monteiro, E. Rocha, The toxicity potential of pharmaceuticals found in the Douro River estuary (Portugal): evaluation of impacts on fish liver, by histopathology, stereology, vitellogenin and CYP1A immunohistochemistry, after sub-acute exposures of the zebrafish model. Environ. Toxicol. Pharmacol. 34, 34–45 (2012)

    Article  CAS  PubMed  Google Scholar 

  44. S. Dietrich, F. Ploessl, F. Bracher, C. Laforsch, Single and combined toxicity of pharmaceuticals at environmentally relevant concentrations in Daphnia magna – a multigenerational study. Chemosphere 79, 60–66 (2010)

    Article  CAS  PubMed  Google Scholar 

  45. X. Dong, X. Qiu, S. Meng, H. Xu, X. Wu, M. Yang, Proteomic profile and toxicity pathway analysis in zebrafish embryos exposed to bisphenol A and di-n-butyl phthalate at environmentally relevant levels. Chemosphere 193, 313–320 (2018)

    Article  CAS  PubMed  Google Scholar 

  46. X.-M. Tian, Song Qi-ru, Combined toxic effects of di-n-butyl phthalate (DBP) and Di-2-ethylhexyl Phthalate (DEHP) on reproductive ability in male rats, J. Environ. Health (2009)

    Google Scholar 

  47. C. Zhou, L. Gao, J.A. Flaws, Prenatal exposure to an environmentally relevant phthalate mixture disrupts reproduction in F1 female mice. Toxicol. Appl. Pharmacol. 318, 49–57 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. T. Pollock, R.E. Weaver, R. Ghasemi, D. deCatanzaro, A mixture of five endocrine-disrupting chemicals modulates concentrations of bisphenol A and estradiol in mice. Chemosphere 193, 321–328 (2018)

    Article  CAS  PubMed  Google Scholar 

  49. H. Xu, X. Shao, Z. Zhang, Y. Zou, X. Wu, L. Yang, Oxidative stress and immune related gene expression following exposure to di-n-butyl phthalate and diethyl phthalate in zebrafish embryos. Ecotoxicol. Environ. Saf. 93, 39–44 (2013)

    Article  CAS  PubMed  Google Scholar 

  50. G. Hu, J. Li, Y. Shan, X. Li, Q. Zhu, H. Li, Y. Wang, X. Chen, Q. Lian, R.-S. Ge, In utero combined di-(2-ethylhexyl) phthalate and diethyl phthalate exposure cumulatively impairs rat fetal Leydig cell development. Toxicology 395, 23–33 (2018)

    Article  CAS  PubMed  Google Scholar 

  51. J. Zhang, L. Yan, M. Tian, Q. Huang, S. Peng, S. Dong, H. Shen, The metabonomics of combined dietary exposure to phthalates and polychlorinated biphenyls in mice. J. Pharm. Biomed. Anal. 66, 287–297 (2012)

    Article  CAS  PubMed  Google Scholar 

  52. H.-T. Gao, R. Xu, W.-X. Cao, Q.-N. Di, R.-X. Li, L. Lu, Q. Xu, S.-Q. Yu, Combined effects of simultaneous exposure to six phthalates and emulsifier glycerol monosterate on male reproductive system in rats. Toxicol. Appl. Pharmacol. 341, 87–97 (2018)

    Article  CAS  PubMed  Google Scholar 

  53. N. Garcia-Reyero, K.J. Kroll, L. Liu, E.F. Orlando, K.H. Watanabe, M.S. Sepulveda, D.L. Villeneuve, E.J. Perkins, G.T. Ankley, N.D. Denslow, Gene expression responses in male fathead minnows exposed to binary mixtures of an estrogen and antiestrogen. BMC Genom. 10, 308 (2009)

    Article  Google Scholar 

  54. B. Huang, D. Li, Y. Yang, Joint toxicity of two phthalates with waterborne copper to Daphnia magna and Photobacterium phosphoreum. Bull. Environ. Contam. Toxicol. 97, 380–386 (2016)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the funds from the High-level Talents Project of Chongqing Medical University (No. R4014) and Research Program of Chongqing Science and Technology Commission (No. cstc2019jcyj-zdxmX0035 and CSTCCXLJRC201714).

Conflicts of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Sheng Pei .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hamid, N., Pei, DS. (2023). Molecular Toxicity Mechanism of Plasticizers in the Reservoir. In: Reservoir Ecotoxicology. Springer, Cham. https://doi.org/10.1007/978-3-031-26344-6_16

Download citation

Publish with us

Policies and ethics

Navigation