Entomophagy in 3D Food Printing

  • Chapter
  • First Online:
3D Printing of Sustainable Insect Materials
  • 285 Accesses

Abstract

Entomophagy refers to consuming insects as feed and food by animals and humans. It is very popular in numerous parts of the world and insects are devoured as the whole insect, as paste form or granular form, and as extracted insect proteins. The role of insects in nature, humans, animals, and 3D food printing is discussed in the current chapter. The convenient factors concerning health, environmental, social, and economic to promote entomophagy explain that edible insects fit neatly into this eco-friendly scenario and, as a result, should be considered top contenders for both food staples and supplements, especially due to their role in sustainable diets (according to FAO). Protein, fat, minerals, vitamins, and micronutrients like calcium, iron, and, zinc are abundant in insects. These reasons made entomophagy the best alternative to other conventional livestock feeds like beef, meat, and poultry. Entomophagy is not widely practiced because of obstacles related to anti-nutrient properties, microbial risks, allergens, mass production, ambiguous or non-existent regulations, consumer acceptability, lack of research, and public awareness. For emerging populations, there is an urgent need for safe, clean, nutritious, and cost-effective food. Three-dimensional (3D) food printing has the potential to solve these shortcomings of existing food production methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agbidye FS, Ofuya TI, Akindele SO (2009) Marketability and nutritional qualities of some edible forest insects in Benue State, Nigeria. Pakistan J Nutr 8(7):917–922

    Article  Google Scholar 

  • Amadi EN, Kiin-Kabari DB (2016) Nutritional composition and microbiology of some edible insects commonly eaten in Africa, hurdles and future prospects: A critical review. J Food Microbiol Saf Hyg 1(1):1000107

    Google Scholar 

  • Anand H, Ganguly A, Haldar P (2008) Potential value of acridids as high protein supplement for poultry feed. Int J Poult Sci 7(7):722–725

    Article  CAS  Google Scholar 

  • Anvo MPM, Toguyéni A, Otchoumou AK, Zoungrana-Kaboré CY, Kouamelan EP (2016) Nutritional qualities of edible caterpillars Cirina butyrospermi in southwestern of Burkina Faso. Int J Innov Appl Stud 18(2):639

    Google Scholar 

  • Awoniyi TAM, Adetuyi FC, Akinyosoye FA (2004) Microbiological investigation of maggot meal, stored for use as livestock feed component. J Food Agric Environ 2:104–106

    Google Scholar 

  • Ayieko MA, Ndong’a MF, Tamale A (2010a) Climate change and the abundance of edible insects in the Lake Victoria Region

    Google Scholar 

  • Ayieko M, Oriaro V, Nyambuga IA (2010b) Processed products of termites and lake flies: improving entomophagy for food security within the Lake Victoria region. Afr J Food Agric Nutr Dev 10(2):2085–2098

    Google Scholar 

  • Belluco S, Losasso C, Maggioletti M, Alonzi CC, Paoletti MG, Ricci A (2013) Edible insects in a food safety and nutritional perspective: a critical review. Compr Rev Food Sci Food Saf 12(3):296–313

    Article  CAS  Google Scholar 

  • Bodenheimer FS (1951) History of Entomophagy. In: Insects as human food. Springer, Dordrecht, pp 39–69

    Chapter  Google Scholar 

  • Bornemissza GE (1976) Australian dung beetle project, 1965–1975. AMRC Rev Aust Meat Res Comm 30:1–30

    Google Scholar 

  • Cerritos R, Cano-Santana Z (2008) Harvesting grasshoppers Sphenarium purpurascens in Mexico for human consumption: a comparison with insecticidal control for managing pest outbreaks. Crop Prot 27(3–5):473–480

    Article  Google Scholar 

  • Chakravorty J (2014) Diversity of edible insects and practices of entomophagy in India: an overview. J Biodivers Biopros Dev 1(3):124

    Article  Google Scholar 

  • Chakravorty J, Ghosh S, Meyer-Rochow VB (2013a) Comparative survey of entomophagy and entomotherapeutic practices in six tribes of Eastern Arunachal Pradesh (India). J Ethnobiol Ethnomed 9(1):1–12

    Article  Google Scholar 

  • Chakravorty J, Ghosh S, Meyer-Rochow VB (2013b) Comparative survey of entomophagy and entomotherapeutic practices in six tribes of Eastern Arunachal Pradesh (India). J Ethnobiol Ethnomed 9(1):50

    Article  PubMed  PubMed Central  Google Scholar 

  • Chantawannakul P (2020) From entomophagy to entomotherapy. Front Biosci (Schol Ed) 25:179–200

    Article  CAS  Google Scholar 

  • Cohen JH, Sáánchez NDM, Montiel-ishino F (2009) Chapulines and food choices in rural Oaxaca. Gastronomica 9(1):61–65

    Article  Google Scholar 

  • Cutter CN (2006) Opportunities for bio-based packaging technologies to improve the quality and safety of fresh and further processed muscle foods. Meat Sci 74(1):131–142

    Article  PubMed  Google Scholar 

  • Danneels EL, Gerlo S, Heyninck K, Van Craenenbroeck K, De Bosscher K, Haegeman G, de Graaf DC (2014) How the venom from the ectoparasitoid wasp Nasonia vitripennis exhibits anti-inflammatory properties on mammalian cell lines. PLoS One 9(5):e96825

    Article  PubMed  PubMed Central  Google Scholar 

  • Dobermann D, Swift JA, Field LM (2017) Opportunities and hurdles of edible insects for food and feed. Nutr Bull 42(4):293–308

    Article  Google Scholar 

  • Doi H, GaÅ‚Ä™cki R, Mulia RN (2021) The merits of entomophagy in the post COVID-19 world. Trends Food Sci Technol 110:849–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekop EA, Udoh AI, Akpan PE (2010) Proximate and anti-nutrient composition of four edible insects in Akwa Ibom State, Nigeria. World J Appl Sci Technol 2(2):224–231

    Google Scholar 

  • Ekoue SE, Hadzi YA (2000) Maggot production as a protein source for young poultry in Togo-preliminary observations. Tropicultura 18(4):212–214

    Google Scholar 

  • Elvin CM, Carr AG, Huson MG, Maxwell JM, Pearson RD, Vuocolo T, Liyou NE, Wong DC, Merritt DJ, Dixon NE (2005) Synthesis and properties of crosslinked recombinant pro-resilin. Nature 437(7061):999–1002

    Article  CAS  PubMed  Google Scholar 

  • FAO (2009a) How to feed the world in 2050. Paper presented at the High Level Expert Forum, Rome, Italy, 12–13 October. Available at www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf

  • FAO (2009b) Biodiversity and nutrition, a common path. Rome

    Google Scholar 

  • FAO (2012) Sustainable Diets and Biodiversity: Directions and Solutions for Policy, Research and Action http://www.fao.org/docrep/016/i3004e/i3004e.pdf

  • Flood J (1980) The moth hunters: Aboriginal prehistory of the Australian Alps, vol 14. Australian Institute of Aboriginal and Torres Strait Island

    Google Scholar 

  • Ghazoul J (2006) Mopane Woodlands and the Mopane Worm: Enhancing rural livelihoods and resource sustainability. Final Technical Report

    Google Scholar 

  • Haldhar SM, Thangjam R, Kadam V, Jakhar BL, Loganathan R, Singh KI, Rolania K, Singh S, Dhaka SR, Singh KM (2021) A review on entomophagy: Natural food insects for ethnic and tribal communities of North-East India. J Environ Biol 42(6):1425–1432

    Article  CAS  Google Scholar 

  • HaoCheng Mealworm, Inc (2012) About HaoCheng Mealworm Inc. (Available at www.hcmealworm.com). Accessed November 2012

  • Hegazi AG, Abd Raboh FA, Ramzy NE, Shaaban DM, Khader DY (2013) Bee venom and propolis as new treatment modality in patients with localized plaque psoriases. Int Res J Med Med Sci 1(1):27–33

    Google Scholar 

  • Hogue CL (1987) Cultural entomology. Annu Rev Entomol 32(1):181–199

    Article  Google Scholar 

  • Hwangbo J, Hong EC, Jang A, Kang HK, Oh JS, Kim BW, Park BS (2009) Utilization of house fly-maggots, a feed supplement in the production of broiler chickens. J Environ Biol 30(4):609–614

    CAS  PubMed  Google Scholar 

  • Ijaiya AT, Eko EO (2009) Effect of replacing dietary fish meal with silkworm (Anaphe infracta) caterpillar meal on performance, carcass characteristics and haematological parameters of finishing broiler chicken. Pak J Nutr 8(6):850–855

    Article  Google Scholar 

  • Ingram M, Nabhan G, Buchmann SL (1996) Our forgotten pollinators: Protecting the birds and bees. Global Pesticide Campaigner 6(4):1–12

    Google Scholar 

  • Institute of Food Technologists (2011) Develo** solutions for develo** countries. (Available at www.ift.org/community/students/competitions/develo**-solutionsfor-develo**-countries.aspx). Accessed December 2012

  • Jang DM, Song HS (2013) Inhibitory effects of bee venom on growth of A549 lung cancer cells via induction of death receptors. J Acupunct Res 30(1):57–70

    Article  Google Scholar 

  • Jongema Y (2017) List of edible insect species of the world. Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands

    Google Scholar 

  • Kelemu S, Niassy S, Torto B, Fiaboe K, Affognon H, Tonnang H, Maniania NK, Ekesi S (2015) African edible insects for food and feed: inventory, diversity, commonalities and contribution to food security. J Insects Food Feed 1(2):103–119

    Article  Google Scholar 

  • Klunder HC, Wolkers-Rooijackers J, Korpela JM, Nout MR (2012) Microbiological aspects of processing and storage of edible insects. Food Control 26(2):628–631

    Article  Google Scholar 

  • Lange KW, Nakamura Y (2021) Edible insects as future food: chances and challenges. J Future Foods 1(1):38–46

    Article  Google Scholar 

  • Lee JY, Kang SS, Kim JH, Bae CS, Choi SH (2005) Inhibitory effect of whole bee venom in adjuvant-induced arthritis. in vivo 19(4):801–805

    PubMed  Google Scholar 

  • Lewis RV (1992) Spider silk: the unraveling of a mystery. Acc Chem Res 25(9):392–398

    Article  CAS  Google Scholar 

  • Li F, Awale S, Zhang H, Tezuka Y, Esumi H, Kadota S (2009) Chemical constituents of propolis from Myanmar and their preferential cytotoxicity against a human pancreatic cancer cell line. J Nat Prod 72(7):1283–1287

    Article  CAS  PubMed  Google Scholar 

  • Looy H, Dunkel FV, Wood JR (2014) How then shall we eat? Insect-eating attitudes and sustainable foodways. Agric Hum Values 31(1):131–141

    Article  Google Scholar 

  • Nadeau L, Nadeau I, Franklin F, Dunkel F (2015) The potential for entomophagy to address undernutrition. Ecol Food Nutr 54(3):200–208

    Article  PubMed  Google Scholar 

  • Newton LARRY, Sheppard CRAIG, Watson DW, Burtle GARY, Dove ROBERT (2005) Using the black soldier fly, Hermetia illucens, as a value-added tool for the management of swine manure. In: Animal and Poultry Waste Management Center, North Carolina State University, Raleigh, NC, 17(2005), pp 18

    Google Scholar 

  • Nonaka K, Sivilay S, Boulidam S (2008) The biodiversity of insects in Vientiane. National Agriculture and Forestry Institute and Research Institute for Hamanity and Nature. Nara, Japan

    Google Scholar 

  • Paoletti MG (2005) Ecological implications of minilivestock: potential of insects, rodents, frogs and sails. CRC Press

    Book  Google Scholar 

  • Paoletti MG, Buscardo E, Dufour DL (2000) Edible invertebrates among Amazonian Indians: a critical review of disappearing knowledge. Environ Dev Sustain 2(3):195–225

    Article  Google Scholar 

  • Payne CL, Scarborough P, Rayner M, Nonaka K (2016) A systematic review of nutrient composition data available for twelve commercially available edible insects, and comparison with reference values. Trends Food Sci Technol 47:69–77

    Article  CAS  Google Scholar 

  • Portes E, Gardrat C, Castellan A, Coma V (2009) Environmentally friendly films based on chitosan and tetrahydrocurcuminoid derivatives exhibiting antibacterial and antioxidative properties. Carbohydr Polym 76(4):578–584

    Article  CAS  Google Scholar 

  • Ramos-Elorduy J, Moreno JMP, Prado EE, Perez MA, Otero JL, De Guevara OL (1997) Nutritional value of edible insects from the state of Oaxaca, Mexico. J Food Compos Anal 10(2):142–157

    Article  CAS  Google Scholar 

  • Ramos-Elorduy J, Moreno JMP, Camacho VHM (2009) Edible aquatic Coleoptera of the world with an emphasis on Mexico. J Ethnobiol Ethnomed 5(1):1–13

    Article  Google Scholar 

  • Rumpold BA, Schlüter OK (2013) Nutritional composition and safety aspects of edible insects. Mol Nutr Food Res 57(5):802–823

    Article  CAS  PubMed  Google Scholar 

  • Sangavi M, Sarath S (2017) Byproducts of seri-industry and their applications. Kisan World 44(9):21–23

    Google Scholar 

  • Shantibala T, Lokeshwari R (2014) Nutritional and antinutritional composition of the five species of aquatic edible insects consumed in Manipur. India. J Insect Sci 14:14

    CAS  PubMed  Google Scholar 

  • Simpanya M, Allotey J (2000) A mycological investigation of phane, an edible caterpillar of an emperor moth, Imbrasia belina. J Food Prot 63:137–140

    Article  CAS  PubMed  Google Scholar 

  • Shantibala T, Lokeshwari RK, Sharma HD (2012) Entomophagy practices among the ethnic communities of Manipur. North-East India IJIIT 1(5):13–20

    Google Scholar 

  • Sharma S, Banu N (2019) Entomophagy diversity in India a review. J Emerg Technol Innov Res. (www jetir org), ISSN 6:2349–5162

    Google Scholar 

  • Shelomi M (2015) Why We Still Don’t Eat Insects: Assessing Entomophagy Promotion through a Diffusion of Innovations Framework. Trends Food Sci Technol 45(2):311–318

    Article  CAS  Google Scholar 

  • Shen L, Li D, Feng F, Ren Y (2006) Nutritional composition of Polyrhachis vicina Roger (Edible Chinese black ant). Songklanakarin J Sci Technol 28(Suppl 1):107–114

    Google Scholar 

  • Silow CA (1983) Notes on Ngangela and Nkoya ethnozoology: ants and termites. Etnol Stud Goteb 36:1–7

    Google Scholar 

  • Soares S, Forkes A (2014) Insects Au Gratin: an investigation into the experiences of develo** a 3D printer that uses insect protein based flour as a building medium for the production of sustainable food. In: Bohemia E, et al. (eds) Proceedings of the 16th International Conference on Engineering and Product Design

    Google Scholar 

  • Srinroch C, Srisomsap C, Chokchaichamnankit D, Punyarit P, Phiriyangkul P (2015) Identification of novel allergen in edible insect, Gryllus bimaculatus and its cross-reactivity with Macrobrachium spp. allergens. Food Chem 184:160–166

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Peng Z, Yan L, Fuh JYH, Hong GS (2015) 3D food printing an innovative way of mass customization in food fabrication. Int J Bioprinting 1(1):27–38

    Google Scholar 

  • Téguia A, Mpoame M, Mba JO (2002) The production performance of broiler birds as affected by the replacement of fish meal by maggot meal in the starter and finisher diets. Tropicultura 20(4):187–192

    Google Scholar 

  • TNO (2016) Food & nutrition: development of healthy and safe food. Web. 26 November 2016

    Google Scholar 

  • Turner JS, Soar RC (2008, May) Beyond biomimicry: what termites can tell us about realizing the living building. In: First International Conference on Industrialized, Intelligent Construction at Loughborough University, pp 1–18

    Google Scholar 

  • Van Huis A (2002) Medical and stimulating properties ascribed to arthropods and their products in sub-Saharan Africa. In: Motte-Florac E, Thomas JMC (eds) Insects in oral literature and traditions. Peeters-SELAF, Paris-Louvai

    Google Scholar 

  • Van Huis A (2003) Insects as food in sub-Saharan Africa. Int J Trop Insect Sci 23(3):163–185

    Article  Google Scholar 

  • Van Huis A (2015) Edible insects contributing to food security? Agric Food Sec 4(1):1–9

    Google Scholar 

  • van Huis A, van Gurp H, Dicke M (2012) Het insectenkookboek. Atlas

    Google Scholar 

  • Van Huis A, Van Itterbeeck J, Klunder H, Mertens E, Halloran A, Muir G, & Vantomme P (2013) Edible insects: Future prospects for food and feed security (No. 171). Food and agriculture organization of the United Nations

    Google Scholar 

  • Van Mele P (2008) A historical review of research on the weaver ant Oecophylla in biological control. Agric For Entomol 10(1):13–22

    Google Scholar 

  • Yhoung-Aree J (2010) Edible insects in Thailand: nutritional values and health concerns. Edible forest insects, pp 201–216

    Google Scholar 

  • Yhoung-Aree J, Viwatpanich K (2005) Edible insects in the Laos PDR, Myanmar, Thailand, and Vietnam. Ecological implications of minilivestock: potential of insects, rodents, frogs and snails, pp 415–440

    Google Scholar 

  • Yong-Woo L (1999) Silk reeling and testing manual. FAO Agricultural Services Bulletin, p 136

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Priya, Kumar, R. (2023). Entomophagy in 3D Food Printing. In: Singh, D., Kumar, R., Singh, S., Ramniwas, S. (eds) 3D Printing of Sustainable Insect Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-25994-4_1

Download citation

Publish with us

Policies and ethics

Navigation