Lensless Image Reconstruction with an Untrained Neural Network

  • Conference paper
  • First Online:
Image and Vision Computing (IVCNZ 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13836))

Included in the following conference series:

Abstract

Lensless image reconstruction is an ill-posed inverse problem in computational imaging, having several applications in machine vision. Existing approaches rely on large datasets for learning to perform deconvolution and are often specific to the point spread function of a particular lensless imager. Generating pairs of lensless images and their corresponding ground truths requires a specialized laboratory setup, thus making the dataset collection procedure challenging. We propose a reconstruction method using untrained neural networks that relies on the underlying physics of lensless image generation. We use an encoder-decoder network for reconstructing the lensless image for a known PSF. The same network can predict the PSF when supplied with a single example of input and ground-truth pair, thus acting as a one-time calibration step for any lensless imager. We used a physics-guided consistency loss function to optimize our model to perform reconstruction and PSF estimation. Our model generates accurate non-blind reconstructions with a PSNR of 24.55 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 74.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 96.29
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Antipa, N., et al.: Diffusercam: lensless single-exposure 3d imaging. Optica 5(1), 1–9 (2018)

    Article  Google Scholar 

  2. Salman Asif, M., Ayremlou, A., Sankaranarayanan, S.C., Veeraraghavan, A., Baraniuk, R.: FlatCam: Thin, lensless cameras using coded aperture and computation. IEEE Trans. Comput. Imag. 3(3), 384–397 (2017)

    Google Scholar 

  3. Tanida, J., et al.: Thin observation module by bound optics (TOMBO): concept and experimental verification. Appl. Opt. 40(11), 1806–1813 (2001)

    Article  Google Scholar 

  4. Gill, P.R., Lee, C., Lee, D.-G., Wang, A., Molnar, A.: A microscale camera using direct Fourier-domain scene capture. Opt. Lett. 36(15), 2949–2951 (2011)

    Google Scholar 

  5. Boominathan, V., et al.: Lensless imaging: a computational renaissance. IEEE Signal Process. Mag. 33(5), 23–35 (2016)

    Google Scholar 

  6. Kuo, G., Antipa, N., Ng, R., Waller, L.: 3D fluorescence microscopy with diffusercam. In: Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS &C, MATH, pcAOP), page CM3E.3. Optica Publishing Group (2018)

    Google Scholar 

  7. Adams, J.K., et al.: Single-frame 3D fluorescence microscopy with ultraminiature lensless flatscope. Sci. Adv. 3(12) (2017)

    Google Scholar 

  8. Zheng, Y., Salman Asif, M.: Joint image and depth estimation with mask-based lensless cameras. In: 2019 IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP) (2019)

    Google Scholar 

  9. Wang, Z.W., Vineet, V., Pittaluga, F., Sinha, S.N., Cossairt, O., Kang, S.B.: Privacy-preserving action recognition using coded aperture videos. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1–10 (2019)

    Google Scholar 

  10. Canh, T.N., Nagahara, H.: Deep compressive sensing for visual privacy protection in flatcam imaging. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 3978–3986 (2019)

    Google Scholar 

  11. Hegde, C.: Algorithmic Aspects of Inverse Problems Using Generative Models. IEEE Press (2018)

    Google Scholar 

  12. Ongie, G., Jalal, A., Metzler, C.A., Baraniuk, R.G., Dimakis, A.G., Willett, R.: Deep learning techniques for inverse problems in imaging. IEEE J. Select. Areas Inf. Theory 1(1), 39–56 (2020)

    Article  Google Scholar 

  13. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  MATH  Google Scholar 

  14. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phy. D Nonlinear Phenomena 60, 259–268 (1992)

    Google Scholar 

  16. Sinha, A., Lee, J., Li, S., Barbastathis, G.: Lensless computational imaging through deep learning. Optica 4(9), 1117–1125 (2017)

    Article  Google Scholar 

  17. Li, Y., Xue, Y., Tian, L.: Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media. Optica 5(10), 1181–1190 (2018)

    Article  Google Scholar 

  18. Li, S., Deng, M., Lee, J., Sinha, A., Barbastathis, G.: Imaging through glass diffusers using densely connected convolutional networks. Optica 5(7), 803–813 (2018)

    Article  Google Scholar 

  19. Tan, J., et al.: Face detection and verification using lensless cameras. IEEE Trans. Comput. Imaging 5(2), 180–194 (2018)

    Google Scholar 

  20. Khan, S.S., Adarsh, V.R., Boominathan, V., Tan, J., Veeraraghavan, A., Mitra, K.: Towards photorealistic reconstruction of highly multiplexed lensless images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7860–7869 (2019)

    Google Scholar 

  21. Monakhova, K., Yurtsever, J., Kuo, G., Antipa, N., Yanny, K., Waller, L.: Learned reconstructions for practical mask-based lensless imaging. Opt. Express 27(20), 28075–28090 (2019)

    Article  Google Scholar 

  22. Rego, J.D., Kulkarni, K., Jayasuriya, S.: Robust lensless image reconstruction via PSF estimation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 403–412 (2021)

    Google Scholar 

  23. Nelson, S., Menon, R.: Bijective-constrained cycle-consistent deep learning for optics-free imaging and classification. Optica 9(1), 26–31 (2022)

    Article  Google Scholar 

  24. George Em Karniadakis: Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang. Phys. Inf. Mach. Learn. Nat. Rev. Phys. 3(6), 422–440 (2021)

    Google Scholar 

  25. Wang, F., et al.: Phase imaging with an untrained neural network. Light: Sci. Appl. 9(1), 1–7 (2020)

    Google Scholar 

  26. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abeer Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Banerjee, A., Kumar, H., Saurav, S., Singh, S. (2023). Lensless Image Reconstruction with an Untrained Neural Network. In: Yan, W.Q., Nguyen, M., Stommel, M. (eds) Image and Vision Computing. IVCNZ 2022. Lecture Notes in Computer Science, vol 13836. Springer, Cham. https://doi.org/10.1007/978-3-031-25825-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25825-1_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25824-4

  • Online ISBN: 978-3-031-25825-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation