Fault Detection Exploiting Artificial Intelligence in Satellite Systems

  • Conference paper
  • First Online:
The Use of Artificial Intelligence for Space Applications (AII 2022)

Abstract

Mission control and fault management are fundamental in safety-critical scenarios such as space applications. To this extent, fault detection techniques are crucial to meet the desired safety and integrity level. This work proposes a fault detection system exploiting an autoregressive model, which is based on a Deep Neural Network (DNN). We trained the aforementioned model on a dataset composed of telemetries acquired from Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS). The training process has been designed as a sequence-to-sequence task, varying the length of input and output time series. Several DNN architectures were proposed, using both Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) as basic building blocks. Lastly, we performed fault injection modeling faults of different nature. The results obtained show that the proposed solution detects up to 90% of injected faults. We found that GRU-based models outperform LSTM-based ones in this task. Furthermore, we demonstrated that we can predict signal evolution without any knowledge of the underlying physics of the system, substituting a DNN to the traditional differential equations, reducing expertise and time-to-market concerning existing solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ginosar, R.: Survey of Processors for Space. Data Systems in Aerospace (DASIA), Eurospace (2012)

    Google Scholar 

  2. Lentaris, G., Maragos, K., Stratakos, I., et al.: High-performance embedded computing in space: evaluation of platforms for vision-based navigation. J. Aerosp. Inf. Syst. 15, 178–192 (2018). https://doi.org/10.2514/1.I010555

    Article  Google Scholar 

  3. Iturbe, X., Venu, B., Ozer, E., et al.: The arm triple core lock-step (TCLS) processor. ACM Trans. Comput. Syst. 36, 1–30 (2019). https://doi.org/10.1145/3323917

    Article  Google Scholar 

  4. Reuther, A., Michaleas, P., Jones, M., et al.: Survey of Machine Learning Accelerators. https://ieeexplore.ieee.org/Xplore/home.jsp

  5. Giuffrida, G., Diana, L., de Gioia, F., et al.: CloudScout: a deep neural network for on-board cloud detection on hyperspectral images. Remote Sens. 12, 2205 (2020). https://doi.org/10.3390/rs12142205

    Article  Google Scholar 

  6. Rapuano, E., Meoni, G., Pacini, T., et al.: An FPGA-based hardware accelerator for CNNs inference on board satellites: benchmarking with Myriad 2-based solution for the CloudScout case study. https://www.mdpi.com/ (2021). https://doi.org/10.3390/rs13081518

  7. Ecoffet, A., Huizinga, J., Lehman, J., et al.: Go-Explore: A New Approach for Hard-Exploration Problems (2019). https://arxiv.org/

  8. Guiotto, A., Martelli, A., Paccagnini, C., Lavagna, M.: SMART-FDIR: Use of Artificial Intelligence in the Implementation of a Satellite FDIR

    Google Scholar 

  9. Giuffrida, G., Fanucci, L., Meoni, G., et al.: The Φ-Sat-1 mission: the first on-board deep neural network demonstrator for satellite earth observation. IEEE Trans. Geosci. Remote. Sens. 60 (2022). https://doi.org/10.1109/TGRS.2021.3125567

  10. OMeara, C., Schlag, L., Wickler, M.: Applications of deep learning neural networks to satellite telemetry monitoring. In: 2018 SpaceOps Conference. American Institute of Aeronautics and Astronautics, Reston, Virginia (2018)

    Google Scholar 

  11. di Mascio, S., Menicucci, A., Ottavi, M., et al.: On-Board satellite telemetry forecasting with RNN on RISC-V based multicore processor. In: IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT) (2020). https://doi.org/10.1109/DFT50435.2020.9250796

  12. Miljković, D.: Fault detection methods: a literature survey. In: 2011 Proceedings of the 34th International Convention MIPRO (2011)

    Google Scholar 

  13. Zolghadri, A.: Advanced model-based FDIR techniques for aerospace systems: today challenges and opportunities. Prog. Aerosp. Sci. 53, 18–29 (2012). https://doi.org/10.1016/j.paerosci.2012.02.004

    Article  Google Scholar 

  14. Zolghadri, A.: The challenge of advanced model-based FDIR for real-world flight-critical applications. Eng. Appl. Artif. Intell. (2018)

    Google Scholar 

  15. Schulte, P., Spencer, D.A.: On-Board model-based fault diagnosis for autonomous proximity operations. In: 69th International Astronautical Congress (IAC) (2018)

    Google Scholar 

  16. Codetta-Raiteri, D., Portinale, L.: Dynamic Bayesian networks for fault detection, identification, and recovery in autonomous spacecraft. IEEE Trans. Syst. Man, Cybern. Syst. 45, 13–24 (2014). https://doi.org/10.1109/TSMC.2014.2323212

  17. Valdes, A., Khorasani, K., Ma, L.: Dynamic neural network-based fault detection and isolation for thrusters in formation flying of satellites. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5553. LNCS, pp. 780–793 (2009). https://doi.org/10.1007/978-3-642-01513-7_85

  18. Ibrahim, S.K., Ahmed, A., Zeidan, M.A.E., Ziedan, I.E.: Machine learning techniques for satellite fault diagnosis. Ain Shams Eng. 11, 45–56 (2020). https://doi.org/10.1016/j.asej.2019.08.006

  19. Ganesan, M., Lavanya, R., Nirmala Devi, M.: Fault detection in satellite power system using convolutional neural network. Telecommun. Syst. 76, 505–511 (2021). https://doi.org/10.1007/S11235-020-00722-5

    Article  Google Scholar 

  20. Picardi, G., Biccari, D., Cartacci, M., et al.: MARSIS, a radar for the study of the Martian subsurface in the Mars Express mission. Mem. Della Soc. Astron. Ital. Suppl. 11, 15 (2007)

    Google Scholar 

  21. Orosei, R., Jordan, R.L., Morgan, D.D., et al.: Mars advanced radar for subsurface and ionospheric sounding (MARSIS) after nine years of operation: a summary. Planet. Space Sci. 112, 98–114 (2015). https://doi.org/10.1016/j.pss.2014.07.010

    Article  Google Scholar 

  22. Orosei, R., Huff, R.L., Ivanov, A.B., et al.: Mars Express-MARSIS to Planetary Science Archive Interface Control Document (2007)

    Google Scholar 

  23. Hochreiter, S.: The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 6, 107–116 (1998). https://doi.org/10.1142/S0218488598000094

    Article  MATH  Google Scholar 

  24. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  25. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling (2014). https://arxiv.org/

  26. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of the 30th International Conference on Machine Learning (2013)

    Google Scholar 

  27. Furano, G., Meoni, G., Dunne, A., et al.: Towards the use of Artificial Intelligence on the edge in space systems: challenges and opportunities. IEEE Aerosp. Electron. Syst. Mag. 35, 44–56 (2020). https://doi.org/10.1109/MAES.2020.3008468

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Ferrante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ferrante, N., Giuffrida, G., Nannipieri, P., Bechini, A., Fanucci, L. (2023). Fault Detection Exploiting Artificial Intelligence in Satellite Systems. In: Ieracitano, C., Mammone, N., Di Clemente, M., Mahmud, M., Furfaro, R., Morabito, F.C. (eds) The Use of Artificial Intelligence for Space Applications. AII 2022. Studies in Computational Intelligence, vol 1088. Springer, Cham. https://doi.org/10.1007/978-3-031-25755-1_10

Download citation

Publish with us

Policies and ethics

Navigation