E-waste and Its Management by Using Algae

  • Chapter
  • First Online:
Microbial Technology for Sustainable E-waste Management

Abstract

The presence of numerous potentially dangerous product components that can pollute the environmental surroundings and endanger the health of individuals unless destruction processes are not rigorously handled, electronic waste (also known as “e-waste”) is a major environmental risk with the speediest global trend. E-waste is classified as a toxic chemical, when it is not adequately disposed of and processed; it may result in detrimental effects on the environment. Recycling elements such as gold, silver, copper, lead, zinc, and mercury from e-waste have gained significant attention. The movement, distribution, and transit of toxic metals at the sediment–water interface all depend heavily on microbial activity, and this has an impact on how the metals are distributed throughout the food chain. This review explores how heavy metal speciation and transformation in sediments are impacted by microbial algae activities. Additionally, it highlights recent developments in the recovery of metals in sediments by algae as well as future possible applications and drawbacks, and it emphasises the significance of contemporary modern biotechnology and strategies in enhancing microbial activities’ ability to alter heavy metals more effectively and quickly. Bioprocessing of waste products for recovery of metals is a promising and new technology with minimal negative effects on the environment and great cost-effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amemiya T (2018) Current state and trend of waste and recycling in Japan. Int J Earth Environ Sci 3(2):1–11

    Google Scholar 

  • Areco MM, Hanela S, Duran J, dos Santos Afonso M (2012) Biosorption of Cu(II), Zn(II), Cd(II) and Pb(II) by dead biomasses of green alga Ulva lactuca and the development of a sustainable matrix for adsorption implementation. J Hazard Mater 213:123–132

    Google Scholar 

  • Baccini P, Brunner PH (2012) Metabolism of the anthroposphere: analysis, evaluation, design. MIT Press

    Google Scholar 

  • Balde CP, Forti V, Gray V, Kuehr R, Stegmann P (2017) The global E-waste monitor 2017: quantities, flows, and resources. United Nations University, International Telecommunication Union, and International Solid Waste Association, Bonn, Geneva, and Vienna, p 116

    Google Scholar 

  • Balde CP, Wang F, Kuehr R, Huisman J (2015) The global E-waste monitor (2014): quantities, flows and resources. United Nations University, Tokyo & Bonn, p 79

    Google Scholar 

  • Bi X, Thomas GO, Jones KC, Qu W, Sheng G, Martin FL, Fu J (2007) Exposure of electronics dismantling workers to polybrominated diphenyl ethers, polychlorinated biphenyls, and organochlorine pesticides in South China. Environ Sci Technol 41(16):5647–5653

    CAS  Google Scholar 

  • Brierley CL, Brierley JA (2013) Progress in bioleaching: part B: applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol 97(17):7543–7552

    CAS  Google Scholar 

  • Cesaro A, Belgiorno V, Gorrasi G, Viscusi G, Vaccari M, Vinti G, Salhofer S (2019) A relative risk assessment of the open burning of WEEE. Environ Sci Pollut Res 26(11):11042–11052

    Google Scholar 

  • Chan JK, **ng GH, Xu Y, Liang Y, Chen LX, Wu SC, Wong MH (2007) Body loadings and health risk assessment of polychlorinated dibenzo-p-dioxins and dibenzofurans at an intensive electronic waste recycling site in China. Environ Sci Technol 41(22):7668–7674

    CAS  Google Scholar 

  • Chi X, Wang MYL, Reuter MA (2014) E-waste collection channels and household recycling behaviors in Taizhou of China. J Clean Prod 80:87–95

    Google Scholar 

  • Čížková M, Mezricky P, Mezricky D, Rucki M, Zachleder V, Vítová M (2021) Bioaccumulation of rare earth elements from waste luminophores in the red algae, Galdieria Phlegrea. Waste Biomass Valoriz 12(6):3137–3146

    Google Scholar 

  • Cossu R, Salieri V, Bisinella V (eds) (2012) Urban mining: a global cycle approach to resource recovery from solid waste. CISA Publ.

    Google Scholar 

  • Das N (2010) Recovery of precious metals through biosorption—a review. Hydrometallurgy 103(1–4):180–189

    CAS  Google Scholar 

  • Deubzer O, Herreras L, Hajosi E, Hilbert I, Buchert M, Wuisan L, Zonneveld N (2019) Baseline and gap/obstacle analysis of standards and regulations. CEWASTE Voluntary Certification Scheme for Waste Treatment

    Google Scholar 

  • do Nascimento Júnior WJ, da Silva MGC, Vieira MGA (2019) Competitive biosorption of Cu2+ and Ag+ ions on brown macro-algae waste: kinetic and ion-exchange studies. Environ Sci Pollut Res 26(23):23416–23428

    Google Scholar 

  • Eguchi A, Nomiyama K, Devanathan G, Subramanian A, Bulbule KA, Parthasarathy P, Tanabe S (2012) Different profiles of anthropogenic and naturally produced organohalogen compounds in serum from residents living near a coastal area and e-waste recycling workers in India. Environ Int 47:8–16

    CAS  Google Scholar 

  • El-Naggar, N. E. A., & Rabei, N. H. (2020). Bioprocessing optimization for efficient simultaneous removal of methylene blue and nickel by Gracilaria seaweed biomass. Sci Rep 10(1):1–21

    Google Scholar 

  • Forti V, Balde CP, Kuehr R, Bel G (2020) The global e-waste monitor 2020: quantities, flows and the circular economy potential

    Google Scholar 

  • Freitas R, Cardoso CE, Costa S, Morais T, Moleiro P, Lima AF, Pereira E (2020) New insights on the impacts of e-waste towards marine bivalves: the case of the rare earth element Dysprosium. Environ Pollut 260:113859

    CAS  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156(3):609–643

    CAS  Google Scholar 

  • Grant K, Goldizen FC, Sly PD, Brune MN, Neira M, Van den Berg M, Norman RE (2013) Health consequences of exposure to e-waste: a systematic review. Lancet Global Health 1:350–361

    Google Scholar 

  • Hicks C, Dietmar R, Eugster M (2005) The recycling and disposal of electrical and electronic waste in China—legislative and market responses. Environ Impact Assess Rev 25(5):459–471

    Google Scholar 

  • Huo X, Peng L, Xu X, Zheng L, Qiu B, Qi Z, Piao Z (2007) Elevated blood lead levels of children in Guiyu, an electronic waste recycling town in China. Environ Health Perspect 115(7):1113–1117

    CAS  Google Scholar 

  • Ilyas S, Lee J (2014) Biometallurgical recovery of metals from waste electrical and electronic equipment: a review. ChemBioEng Rev 1:148–169

    Google Scholar 

  • Işıldar A, Vossenberg JVD, Rene ER, Hullebusch EDV, Lens PN (2017) Biorecovery of metals from electronic waste. In: Sustainable heavy metal remediation. Springer, Cham, pp 241–278

    Google Scholar 

  • Ji L, **e S, Feng J, Li Y, Chen L (2012) Heavy metal uptake capacities by the common freshwater green alga Cladophora fracta. J Appl Phycol 24(4):979–983

    CAS  Google Scholar 

  • Kalamaras G, Kloukinioti M, Antonopoulou M, Ntaikou I, Vlastos D, Eleftherianos A, Dailianis S (2021) The potential risk of electronic waste disposal into aquatic media: the case of personal computer motherboards. Toxics 9(7):166

    CAS  Google Scholar 

  • Kiddee P, Naidu R, Wong MH (2013) Electronic waste management approaches: an overview. Waste Manag 33(5):1237–1250

    Google Scholar 

  • Kiddee P, Pradhan JK, Mandal S, Biswas JK, Sarkar B (2020) An overview of treatment technologies of e-waste. Handbook of electronic waste management, pp 1–18

    Google Scholar 

  • Kucuker MA, Wieczorek N, Kuchta K, Copty NK (2017) Biosorption of neodymium on Chlorella vulgaris in aqueous solution obtained from hard disk drive magnets. PLoS ONE 12(4):e0175255

    Google Scholar 

  • Landrigan PJ, Fuller R, Acosta NJ, Adeyi O, Arnold R, Baldé AB, Bertollini R, Bose-O'Reilly S, Boufford JI, Breysse PN, Chiles T (2018) The Lancet Commission on pollution and health. The Lancet 391(10119):462–512

    Google Scholar 

  • Law RJ, Herzke D, Harrad S, Morris S, Bersuder P, Allchin CR (2008) Levels and trends of HBCD and BDEs in the European and Asian environments, with some information for other BFRs. Chemosphere 73(2):223–241

    CAS  Google Scholar 

  • Li W, Achal V (2020) Environmental and health impacts due to e-waste disposal in China—a review. Sci Total Environ 737:139745

    CAS  Google Scholar 

  • Lundgren K (2012) The global impact of e-waste: addressing the challenge. International Labour Organization

    Google Scholar 

  • Maznah WW, Al-Fawwaz AT, Surif M (2012) Biosorption of copper and zinc by immobilised and free algal biomass, and the effects of metal biosorption on the growth and cellular structure of Chlorella sp. and Chlamydomonas sp. isolated from rivers in Penang, Malaysia. J Environ Sci 24(8):1386–1393

    Google Scholar 

  • Montalvo C, Peck D, Rietveld E (2016) A longer lifetime for products: benefits for consumers and companies

    Google Scholar 

  • Moreira VR, Lebron YAR, Freire SJ, Santos LVS, Palladino F, Jacob RS (2019) Biosorption of copper ions from aqueous solution using Chlorella pyrenoidosa: optimization, equilibrium and kinetics studies. Microchem J 145:119–129

    CAS  Google Scholar 

  • Orlins S, Guan D (2016) China’s toxic informal e-waste recycling: local approaches to a global environmental problem. J Clean Prod 114:71–80

    CAS  Google Scholar 

  • Pathak P, Srivastava RR (2017) Assessment of legislation and practices for the sustainable management of waste electrical and electronic equipment in India. Renew Sustain Energy Rev 78:220–232

    Google Scholar 

  • Pradhan D, Sukla LB, Mishra BB, Devi N (2019) Biosorption for removal of hexavalent chromium using microalgae Scenedesmus sp. J Clean Prod 209:617–629

    CAS  Google Scholar 

  • Rittmann BE (2008) Opportunities for renewable bioenergy using microorganisms. Biotechnol Bioeng 100(2):203–212

    CAS  Google Scholar 

  • Robinson BH (2009) E-waste: an assessment of global production and environmental impacts. Sci Total Environ 408(2):183–191

    CAS  Google Scholar 

  • Shamim A, Mursheda AK, Rafiq I (2015) E-waste trading impact on public health and ecosystem services in develo** countries. J Waste Resour 5(4):1–18

    Google Scholar 

  • Shen L, Saky SA, Yang Z, Ho SH, Chen C, Qin L, Lu Y (2019) The critical utilization of active heterotrophic microalgae for bioremoval of Cr (VI) in organics co-contaminated wastewater. Chemosphere 228:536–544

    CAS  Google Scholar 

  • Song Q, Li J, Zeng X (2015) Minimizing the increasing solid waste through zero waste strategy. J Clean Prod 104:199–210

    Google Scholar 

  • Stenvall E, Tostar S, Boldizar A, Foreman MRS, Möller K (2013) An analysis of the composition and metal contamination of plastics from waste electrical and electronic equipment (WEEE). Waste Manag 33(4):915–922

    CAS  Google Scholar 

  • Stephenson JB (2009) Electronic waste: EPA needs to better control harmful US exports through stronger enforcement and more comprehensive regulation. DIANE Publishing

    Google Scholar 

  • Tabaraki R, Heidarizadi E (2018) Simultaneous biosorption of Arsenic (III) and Arsenic (V): application of multiple response optimizations. Ecotoxicol Environ Saf 166:35–41

    CAS  Google Scholar 

  • Ting YP, Mittal AK (2002) Effect of pH on the biosorption of gold by a fungal biosorbent. Resour Environ Biotechnol 3(4):229–239

    CAS  Google Scholar 

  • Tsydenova O, Bengtsson M (2011) Chemical hazards associated with treatment of waste electrical and electronic equipment. Waste Manag 31(1):45–58

    CAS  Google Scholar 

  • Tunali M, Yenigun O (2021) Biosorption of Ag+ and Nd3+ from single-and multi-metal solutions (Ag+, Nd3+, and Au3+) by using living and dried microalgae. J Mater Cycl Waste Manag 23(2):764–777

    CAS  Google Scholar 

  • Vijayaraghavan K, Mahadevan A, Sathishkumar M, Pavagadhi S, Balasubramanian R (2011) Biosynthesis of Au (0) from Au (III) via biosorption and bioreduction using brown marine alga Turbinaria conoides. Chem Eng J 167(1):223–227

    CAS  Google Scholar 

  • Wang K, Qian J, Liu L (2020) Understanding environmental pollutions of informal e-waste clustering in global south via multi-scalar regulatory frameworks: a case study of Guiyu Town, China. Int J Environ Res Public Health 17(8):2802

    CAS  Google Scholar 

  • Wang W, Tian Y, Zhu Q, Zhong Y (2017) Barriers for household e-waste collection in China: perspectives from formal collecting enterprises in Liaoning Province. J Clean Prod 153:299–308

    Google Scholar 

  • Wang Z, Zhang B, Guan D (2016) Take responsibility for electronic-waste disposal. Nature 536:23–25

    CAS  Google Scholar 

  • Wei L, Liu Y (2012) Present status of e-waste disposal and recycling in China. Procedia Environ Sci 16:506–514

    Google Scholar 

  • Williams E, Kahhat R, Allenby B, Kavazanjian E, Kim J, Xu M (2008) Environmental, social, and economic implications of global reuse and recycling of personal computers. Environ Sci Technol 42(17):6446–6454

    CAS  Google Scholar 

  • Wollmann F, Dietze S, Ackermann JU, Bley T, Walther T, Steingroewer J, Krujatz F (2019) Microalgae wastewater treatment: biological and technological approaches. Eng Life Sci 19(12):860–871

    CAS  Google Scholar 

  • Wong CS, Duzgoren-Aydin NS, Aydin A, Wong MH (2007) Evidence of excessive releases of metals from primitive e-waste processing in Guiyu, China. Environ Pollut 148(1):62–72

    Google Scholar 

  • Wu JP, Luo XJ, Zhang Y, Luo Y, Chen SJ, Mai BX, Yang ZY (2008) Bioaccumulation of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in wild aquatic species from an electronic waste (e-waste) recycling site in South China. Environ Int 34(8):1109–1113

    CAS  Google Scholar 

  • **ng GH, Chan JKY, Leung AOW, Wu SC, Wong MH (2009) Environmental impact and human exposure to PCBs in Guiyu, an electronic waste recycling site in China. Environ Int 35(1):76–82

    CAS  Google Scholar 

  • Zeng X, Mathews JA, Li J (2018) Urban mining of e-waste is becoming more cost-effective than virgin mining. Environ Sci Technol 52:4835–4841

    CAS  Google Scholar 

  • Zhao G, Wang Z, Dong MH, Rao K, Luo J, Wang D, Ma M (2008) PBBs, PBDEs, and PCBs levels in hair of residents around e-waste disassembly sites in Zhejiang Province, China, and their potential sources. Sci Total Environ 397(1–3):46–57

    CAS  Google Scholar 

  • Zheng L, Wu K, Li Y, Qi Z, Han D, Zhang B, Huo X (2008) Blood lead and cadmium levels and relevant factors among children from an e-waste recycling town in China. Environ Res 108(1):15–20

    CAS  Google Scholar 

  • Zou MY, Ran Y, Gong J, Mai BX, Zeng EY (2007) Polybrominated diphenyl ethers in watershed soils of the Pearl River Delta, China: occurrence, inventory, and fate. Environ Sci Technol 41(24):8262–8267

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janhvi Mishra Rawat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shabaaz Begum, J.P., Ngangom, L., Venugopal, D., Rawat, B., Rawat, J.M. (2023). E-waste and Its Management by Using Algae. In: Debbarma, P., Kumar, S., Suyal, D.C., Soni, R. (eds) Microbial Technology for Sustainable E-waste Management. Springer, Cham. https://doi.org/10.1007/978-3-031-25678-3_14

Download citation

Publish with us

Policies and ethics

Navigation