Study on the Adsorption of Cr(VI) by Carbonated Fe3O4@UiO-66

  • Conference paper
  • First Online:
Environmental Pollution Governance and Ecological Remediation Technology (ICEPG 2022)

Part of the book series: Environmental Science and Engineering ((ESE))

Included in the following conference series:

  • 376 Accesses

Abstract

The adsorption process is consistent with Langmuir and the pseudo-first order kinetics, indicating that the adsorption is a monolayer adsorption process. The pH effect study shows that at pH = 3, the adsorption capacity of Cr(VI) is 356.8 mg/g as the highest, and electrostatic interaction is the main mechanism of action. The carbonized magnetic UiO-66 adsorbent showed good adsorption capacity as well as the advantage of the easy recovery, showing great potential for application in the field of wastewater chromium ion treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Altundogan HS (2005) Cr(VI) removal from aqueous solution by iron (III) hydroxide-loaded sugar beet pulp[J]. Process Biochem 40(3/4):1443–1452

    Article  CAS  Google Scholar 

  • Arabkhani P, Asfaram A (2019) Development of a novel three-dimensional magnetic polymer aerogel as an efficient adsorbent for malachite green removal[J]. J Hazard Mater 384:121394

    Article  Google Scholar 

  • Dhal B, Thatoi HN, Das NN et al (2013) Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review[J]. J Hazard Mater 250–251(30):272–291

    Article  Google Scholar 

  • Fan S, Yi W, Yang L et al (2017) Facile synthesis of tea waste/Fe3O4nanoparticle composite for hexavalent chromium removal from aqueous solution[J]. RSC Adv 7(13):7576–7590

    Article  CAS  Google Scholar 

  • Hao L, Wang C, Wu Q et al (2014) Metal–organic framework derived magnetic nanoporous carbon: novel adsorbent for magnetic solid-phase extraction[J]. Anal Chem 86(24)

    Google Scholar 

  • Hao W, Shuai W, Swa B et al (2021) Adenosine-functionalized UiO-66-NH2 to efficiently remove Pb(II) and Cr(VI) from aqueous solution: thermodynamics, kinetics and isothermal adsorption—ScienceDirect[J]

    Google Scholar 

  • Hao J, Guo C, Gao X, Li M, Long H (2022) Synergistic mechanism of Cr(VI) removal by thiourea/sodium alginate adsorption and photocatalytic reduction[J/OL]. J Composites 1–12[2022–03–06].20210622.001

    Google Scholar 

  • Li B, Zhu X, Hu K et al (2016) Defect creation in metal-organic frameworks for rapid and controllable decontamination of roxarsone from aqueous solution[J]. J Hazardous Mater 302(JAN.25):57–64

    Google Scholar 

  • Li P, Fu T, Gao X et al (2019) Adsorption and reduction transformation behaviors of Cr(VI) on mesoporous polydopamine/titanium dioxide composite nanospheres[J]. J Chem Eng Data

    Google Scholar 

  • Liu Y, Li G, Guo Y et al (2017) Flexible and binder-free hierarchical porous carbon film for supercapacitor electrodes derived from MOFs/CNT[J]. ACS Appl Mater Interfaces

    Google Scholar 

  • Lu YQ, Deng ZH (1989) Analysis of IR spectra. Bei**g, Publishing House of Electronics Industry 21

    Google Scholar 

  • Maleki A, Hayati B, Naghizadeh M et al (2015) Adsorption of hexavalent chromium by metal organic frameworks from aqueous solution[J]. J Ind Eng Chem 28:211–216

    Article  CAS  Google Scholar 

  • Owlad M, Aroua MK, Daud WAW et al (2009) Removal of hexavalent chromium-contaminated water and wastewater: a review[J]. Water Air Soil Pollut 200(1–4):59–77

    Article  CAS  Google Scholar 

  • Pan C, Troyer LD, Catalano JG et al (2016) Dynamics of chromium(VI) removal from drinking water by iron electrocoagulation[J]. Environ Sci Technol 50(24):13502

    Article  CAS  Google Scholar 

  • Plummer S, Gorman C, Henrie T et al (2018) Optimization of strong-base anion exchange O&M costs for hexavalent chromium treatment[J]. Water Res 139(AUG.1):420–433

    Google Scholar 

  • Rowsell J, Yaghi OM (2004) Metal–organic frameworks: a new class of porous materials[J]. Microporous Mesoporous Mater 73(1–2):3–14

    Article  CAS  Google Scholar 

  • Shiyang C, Zhou S, Xuerui L, Lin D, Yong S (2012) Study on the removal of Cr(VI) from drinking water by ion exchange membrane chemical reactor[J]. J Safety Environ 12(04):72–75

    Google Scholar 

  • Song JY, Jhung SH (2017) Adsorption of pharmaceuticals and personal care products over metal-organic frameworks functionalized with hydroxyl groups: quantitative analyses of H-bonding in adsorption. Chem Eng J 322:366–374

    Article  CAS  Google Scholar 

  • Wang TT, Cui QL, Wang LL et al (2018) Adsorption characteristics of Al-modified lemon biochar on P and its mechanism[J]. China Environ Sci 38(6):13

    CAS  Google Scholar 

  • Wang, Yuan XZ et al (2015) Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal[J]. APPL CATAL B-ENVIRON 174:445–454

    Google Scholar 

  • Wen C, **ao M et al (2017) MOFs-derived carbon covered alumina (CCA) supported Pt nanoparticles as catalyst for enantioselective hydrogenation[J]. Curr Appl Phys: Official J Korean Phys Soc 17(10):1347–1352

    Google Scholar 

  • Wu S, Ge Y, Wang Y et al (2017) Adsorption of Cr(VI) on nano Uio-66-NH2 MOFs in water[J]. Environ Technol 39(15):1–40

    Google Scholar 

  • Ye Y, Zhao et al (2017) Efficient removal of Cr(III)-organic complexes from water using UV/Fe(III) system: negligible Cr(VI) accumulation and mechanism.[J]. Water Res

    Google Scholar 

  • Yuan F, Zhang Y, Xu H, Gong G (2022) Exploration and prospect of the mechanism of Cr(VI) removal from the environment by humic acid[J/OL]. Environ Chem 1–10[2022–03–06].20220214.1402.006

    Google Scholar 

  • Yu Z, **aodan et al (2013) Magnetic chitosan–iron(III) hydrogel as a fast and reusable adsorbent for chromium(VI) removal[J]. Indus Eng Chem Res

    Google Scholar 

  • Zhang J, Zhao Z, **a Z et al (2015) A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions[J]. Nat Nanotechnol 10(5):444–452

    Article  CAS  Google Scholar 

  • Zhou W, Lu J, Zhou K et al (2016) CoSe2 nanoparticles embedded defective carbon nanotubes derived from MOFs as efficient electrocatalyst for hydrogen evolution reaction[J]. Nano Energy 28:143–150

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Science and Technology Research Project of Liaoning Provincial Education Department (LJ2019QL009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SiTan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X., Wang, S., Che, W. (2023). Study on the Adsorption of Cr(VI) by Carbonated Fe3O4@UiO-66. In: Zhang, J., Ruan, R., Bashir, M.J.K. (eds) Environmental Pollution Governance and Ecological Remediation Technology. ICEPG 2022. Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-25284-6_57

Download citation

Publish with us

Policies and ethics

Navigation