Activity Monitoring Made Easier by Smart 360-degree Cameras

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Abstract

This paper proposes the use of smart 360-degree cameras for activity monitoring. By exploiting the geometric properties of these cameras and adopting off-the-shelf tracking algorithms adapted to equirectangular images, this paper shows how simple it becomes deploying a camera network, and detecting the presence of pedestrians in predefined regions of interest with minimal information on the camera, namely its height. The paper further shows that smart 360-degree cameras can enhance motion understanding in the environment and proposes a simple method to estimate the heatmap of the scene to highlight regions where pedestrians are more often present. Quantitative and qualitative results demonstrate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 117.69
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aggarwal, J.K., Ryoo, M.S.: Human activity analysis: a review. ACM Comput. Surv. (CSUR) 43(3), 1–43 (2011)

    Article  Google Scholar 

  2. Beddiar, D.R., Nini, B., Sabokrou, M., Hadid, A.: Vision-based human activity recognition: a survey. Multimedia Tools Appl. 79(41), 30509–30555 (2020)

    Google Scholar 

  3. Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime tracking. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 3464–3468. IEEE (2016)

    Google Scholar 

  4. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: optimal speed and accuracy of object detection. ar**v preprint ar**v:2004.10934 (2020)

  5. Boult, T., et al.: Applications of omnidirectional imaging: multi-body tracking and remote reality. In: Proceedings Fourth IEEE Workshop on Applications of Computer Vision. WACV 1998 (Cat. No. 98EX201), pp. 242–243. IEEE (1998)

    Google Scholar 

  6. Chen, X., Yang, J.: Towards monitoring human activities using an omnidirectional camera. In: Proceedings of Fourth IEEE International Conference on Multimodal Interfaces, pp. 423–428. IEEE (2002)

    Google Scholar 

  7. Climent-Pérez, P., Spinsante, S., Mihailidis, A., Florez-Revuelta, F.: A review on video-based active and assisted living technologies for automated lifelogging. Expert Syst. Appl. 139, 112847 (2020)

    Article  Google Scholar 

  8. Corbillon, X., Simon, G., Devlic, A., Chakareski, J.: Viewport-adaptive navigable 360-degree video delivery. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–7. IEEE (2017)

    Google Scholar 

  9. Demiröz, B.E., Ari, I., Eroğlu, O., Salah, A.A., Akarun, L.: Feature-based tracking on a multi-omnidirectional camera dataset. In: 2012 5th International Symposium on Communications, Control and Signal Processing, pp. 1–5. IEEE (2012)

    Google Scholar 

  10. Fiore, L., Fehr, D., Bodor, R., Drenner, A., Somasundaram, G., Papanikolopoulos, N.: Multi-camera human activity monitoring. J. Intell. Rob. Syst. 52(1), 5–43 (2008)

    Article  Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  12. Kobilarov, M., Sukhatme, G., Hyams, J., Batavia, P.: People tracking and following with mobile robot using an omnidirectional camera and a laser. In: Proceedings 2006 IEEE International Conference on Robotics and Automation. ICRA 2006, pp. 557–562. IEEE (2006)

    Google Scholar 

  13. Lee, L., Romano, R., Stein, G.: Monitoring activities from multiple video streams: establishing a common coordinate frame. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 758–767 (2000)

    Article  Google Scholar 

  14. Lo Presti, L., Mazzola, G., Averna, G., Ardizzone, E., La Cascia, M.: Depth-aware multi-object tracking in spherical videos. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds.) ICIAP 2022. LNCS, vol. 13233, pp. 362–374. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06433-3_31

  15. Masoud, O., Papanikolopoulos, N.P.: Using geometric primitives to calibrate traffic scenes. Transport. Res. Part C Emerg. Technol. 15(6), 361–379 (2007)

    Article  Google Scholar 

  16. Mazzola, G., Lo Presti, L., Ardizzone, E., La Cascia, M.: A dataset of annotated omnidirectional videos for distancing applications. J. Imaging 7(8), 158 (2021)

    Article  Google Scholar 

  17. Nayar, S.K.: Catadioptric omnidirectional camera. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 482–488. IEEE (1997)

    Google Scholar 

  18. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  19. Scotti, G., Marcenaro, L., Coelho, C., Selvaggi, F., Regazzoni, C.: A novel dual camera intelligent sensor for high definition 360 degrees surveillance. Intell. Distrib. Surveilliance Syst. 26–30 (2004). https://doi.org/10.1049/ic:20040093

  20. Scotti, G., Marcenaro, L., Coelho, C., Selvaggi, F., Regazzoni, C.: Dual camera intelligent sensor for high definition 360 degrees surveillance. IEE Proc. Vision Image Sig. Process. 152(2), 250–257 (2005)

    Article  Google Scholar 

  21. Wang, M.L., Huang, C.C., Lin, H.Y.: An intelligent surveillance system based on an omnidirectional vision sensor. In: 2006 IEEE Conference on Cybernetics and Intelligent Systems, pp. 1–6. IEEE (2006)

    Google Scholar 

  22. Zhou, Z., Chen, X., Chung, Y.C., He, Z., Han, T.X., Keller, J.M.: Activity analysis, summarization, and visualization for indoor human activity monitoring. IEEE Trans. Circuits Syst. Video Technol. 18(11), 1489–1498 (2008)

    Article  Google Scholar 

Download references

Acknowledgement

This work was partially supported by the Italian MIUR within PRIN 2017, Project Grant 20172BH297_004: I-MALL - improving the customer experience in stores by intelligent computer vision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliana Lo Presti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lo Presti, L., Mazzola, G., La Cascia, M. (2023). Activity Monitoring Made Easier by Smart 360-degree Cameras. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13806. Springer, Cham. https://doi.org/10.1007/978-3-031-25075-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25075-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25074-3

  • Online ISBN: 978-3-031-25075-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation